• Title/Summary/Keyword: Active Sensing

Search Result 397, Processing Time 0.028 seconds

A Brushless DC Motor Drive System and Phase Current Estimation Method For Active Knee Prothesis (동력의지를 위한 BLDCM 구동 시스템 및 상전류 추정 기법)

  • Nam, K.J.;Choi, Y.B.;Jung, D.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2013
  • In this paper, we propose a brushless DC motor drive system for active knee prosthesis and low-cost estimation method for phase current from DC-link current. To control motor torque directly, current sensing is very important and current sensing point should be synchronized with voltage switching command to minimize the effect of switching noise in current measurement, For maintaining small form factor, simplifying control schemes and achieving low-cost system, control schemes using DC-link current are used. Moreover, we incorporated phase current estimation method using analog MUX for minimizing current estimation error between DC-link current and phase current. The validity of the proposed system is verified through experimental works.

  • PDF

A Biomolecular Sensing Platform Using RF Active System

  • Kim, Sang-Gyu;Lee, Hee-Jo;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.227-233
    • /
    • 2012
  • This paper describes a novel and compact biosensing platform using an RF active system. The proposed sensing system is based on the oscillation frequency deviation due to the biomolecular binding mechanism on a resonator. The impedance variation of the resonator, which is caused by a specific biomolecular interaction results in a corresponding change in the oscillation frequency of the oscillator so that this change is used for the discrimination of the biomolecular binding, along with concentration variation. Also, a Surface Acoustic Wave (SAW) filter is utilized in order to enhance the biosensing performance of our system. Because the oscillator operates at the skirt frequency range of the SAW filter, a small amount of oscillation frequency deviation is transformed into a large variation in the output amplitude. Next, a power detector is used to detect the amplitude variation and convert it to DC voltage. It was also found that the frequency response of the biosensing system changes linearly with three streptavidin concentrations. Therefore, we expect that the proposed RF biosensing system can be applied to bio/medical applications capable of detecting a nano-sized biomolecular interaction.

Debonding monitoring of CFRP strengthened RC beams using active sensing and infrared imaging

  • Sohn, Hoon;Kim, Seung Dae;In, Chi Won;Cronin, Kelly E.;Harries, Kent
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.391-406
    • /
    • 2008
  • This study attempts to develop a real-time debonding monitoring system for carbon fiber-reinforced polymer (CFRP) strengthened structures by continuously inspecting the bonding condition between the CFRP layer and the host structure. The uniqueness of this study is in developing a new concept and theoretical framework of nondestructive testing (NDT), in which debonding is detected without relying on previously-obtained baseline data. The proposed reference-free damage diagnosis is achieved based on the concept of time reversal acoustics (TRA). In TRA, an input signal at an excitation point can be reconstructed if the response signal measured at another point is reemitted to the original excitation point after being reversed in the time domain. Examining the deviation of the reconstructed signal from the known initial input signal allows instantaneous identification of damage without requiring a baseline signal representing the undamaged state for comparison. The concept of TRA has been extended to guided wave propagations within the CFRP-strengthened reinforced concrete (RC) beams to improve the detectibility of local debonding. Monotonic and fatigue load tests of large-scale CFRP-strengthened RC beams are conducted to demonstrate the potential of the proposed reference-free debonding monitoring system. Comparisons with an electro-mechanical impedance method and an inferred imaging technique are provided as well.

Damage Detection of Railroad Tracks Using Piezoelectric Sensors (압전센서를 이용하는 철로에서의 손상 검색 기술)

  • Yun Chung-Bang;Park Seung-Hee;Inman Daniel J.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.240-247
    • /
    • 2006
  • Piezoelectric sensor-based health monitoring technique using a two-step support vector machine (SYM) classifier is discussed for damage identification of a railroad track. An active sensing system composed of two PZT patches was investigated in conjunction with both impedance and guided wave propagation methods to detect two kinds of damage of the railroad track (one is a hole damage of 0.5cm in diameter at web section and the other is a transverse cut damage of 7.5cm in length and 0.5cm in depth at head section). Two damage-sensitive features were extracted one by one from each method; a) feature I: root mean square deviations (RMSD) of impedance signatures and b) feature II: wavelet coefficients for $A_0$ mode of guided waves. By defining damage indices from those damage-sensitive features, a two-dimensional damage feature (2-D DF) space was made. In order to minimize a false-positive indication of the current active sensing system, a two-step SYM classifier was applied to the 2-D DF space. As a result, optimal separable hyper-planes were successfully established by the two-step SYM classifier: Damage detection was accomplished by the first step-SYM, and damage classification was also carried out by the second step-SYM. Finally, the applicability of the proposed two-step SYM classifier has been verified by thirty test patterns.

  • PDF

Vibration and Stability Control of Rotating Composite Shafts via Collocated Piezoelectic Sensing and Actuation (압전감지기 및 압전작동기를 이용한 복합재료 회전축의 진동 및 안전성 제어)

  • Jeong, Nam-Heui;Kang, Ho-Shik;Yoon, Il-Sung;Song, Oh-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.152-159
    • /
    • 2007
  • A study on the control of free vibration and stability characteristics of rotating hollow circular shafts subjected to compressive axial forces is presented in this paper. Both passive structural tailoring technique and active control scheme via collocated piezoelectric sensing and actuation are used in the study Gyroscopic and centrifugal forces combined with the compressive axial force contribute to the occurrence of divergence and flutter instabilities of the rotating shaft. The dual methodology based on the passive and active control schemes shows a high degree of efficiency toward postponement of these instabilities and expansion of the domain of stability of the system. The structural model of the shaft is based on an advanced thin-walled beam structure that includes the non-classical effects of transverse shear, anisotropy of constituent materials and rotatory inertia.

Biosensing interfaces based on the dendrimer-underlying layer on gold

  • Yun, Hyeon-Cheol;Kim, Hak-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.52-55
    • /
    • 2000
  • Structually organized mono- and multilayers were developed on gold for the catalytic and affinity biosensing using hyper-branched dendrimers. For the catalytic biosensing interface, a new approach to construct a multilayered enzyme film on the electrode surface was developed. The film was prepared by layer-by-layer depositions of dendrimers and periodate-oxidized glucose oxidase. The voltammograms obtained from the GOx/dendrimer multilayered electrodes revealed that bioelectrocatalytic response is directly correlated to the number of deposited bilayers. From the analysis of voltammetric and ellipsometric signals, the coverage of active enzyme per layer during the layering steps was estimated, demonstrating the spatially-ordered multilayer formation. As an extension of the study, dendrimers having various degrees of ferrocenyl modification were prepared and used. The resulting electrodes were electrochemically characterized, and the density of ferrocenyl groups, active enzyme coverage, and sensitivity were estimated. For the affinity-sensing surrface, a biosensor system based on avidin-biotin interaction was developed. As the building block of affinity monolayer, G4 dendrimer having partial ferrocenyl-tethered surface groups was prepared and used. And the biotinylated and electroactive dendritic monolayer was used for the affinity-sensing surface interacting with avidin. Electrochemical characterization of the resulting biosensor was conducted using free enzyme in electrolyte in terms of degree of surface coverage with avidin and subsequent surface shielding.

  • PDF

Monitoring of Strength Gain in Concrete Using Smart PZT Transducers

  • Qureshi, Adeel Riaz;Shin, Sung-Woo;Yun, Chung-Bang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.501-508
    • /
    • 2007
  • This paper presents the feasibility of using electromechanical impedance based active sensing technique for nondestructive strength gain monitoring of early-age concrete by employing piezoelectric lead-zirconate-titanate (PZT) patches on concrete surface. The strength development of early age concrete is actively monitored by performing a series of experiments on concrete specimens under moist curing condition. The electrical admittance signatures are acquired for five different curing ages and compared with each other. The resonant frequency shifts of PZT patches with increasing days is observed which is on account of additional stiffening due to strength gain of concrete during curing and level of stiffening being related to strength obtained from compression tests on companion cylinder specimens. The proposed approach is found to be suitable for monitoring the development of compressive strength in early-age concrete. It is also observed in this study that root mean square deviation (RMSD) in admittance signatures of the PZT patches can also be used as an indicator of concrete strength development.

An Effective MC-BCS-SPL Algorithm and Its Performance Comparison with Respect to Prediction Structuring Method (효과적인 MC-BCS-SPL 알고리즘과 예측 구조 방식에 따른 성능 비교)

  • Ryug, Joong-seon;Kim, Jin-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1355-1363
    • /
    • 2017
  • Recently, distributed compressed video sensing (DCVS) has been actively studied in order to achieve a low complexity video encoder by integrating both compressed sensing and distributed video coding characteristics. Conventionally, a motion compensated block compressed sensing with smoothed projected Landweber (MC-BCS-SPL) has been considered as an effective scheme of DCVS with all compressed sensing frames pursuing the simplest sampling. In this scheme, video frames are separately classified into key frames and WZ frames. However, when reconstructing WZ frame with conventional MC-BCS-SPL scheme at the decoder side, the visual qualities are poor for temporally active video sequences. In this paper, to overcome the drawbacks of the conventional scheme, an enhanced MC-BCS-SPL algorithm is proposed, which corrects the initial image with reference to the key frame using a high correlation between adjacent key frames. The proposed scheme is analyzed with respect to GOP (Group of Pictures) structuring method. Experimental results show that the proposed method performs better than conventional MC-BCS-SPL in rate-distortion.

Damage Detecion of CFRP-Laminated Concrete based on a Continuous Self-Sensing Technology (셀프센싱 상시계측 기반 CFRP보강 콘크리트 구조물의 손상검색)

  • Kim, Young-Jin;Park, Seung-Hee;Jin, Kyu-Nam;Lee, Chang-Gil
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.407-413
    • /
    • 2011
  • This paper reports a novel structural health monitoring (SHM) technique for detecting de-bonding between a concrete beam and CFRP (Carbon Fiber Reinforced Polymer) sheet that is attached to the concrete surface. To achieve this, a multi-scale actuated sensing system with a self-sensing circuit using piezoelectric active sensors is applied to the CFRP laminated concrete beam structure. In this self-sensing based multi-scale actuated sensing, one scale provides a wide frequency-band structural response from the self-sensed impedance measurements and the other scale provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. To quantify the de-bonding levels, the supervised learning-based statistical pattern recognition was implemented by composing a two-dimensional (2D) plane using the damage indices extracted from the impedance and guided wave features.

An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers

  • Ruan, Jiabiao;Zhang, Zhimin;Wang, Tao;Li, Yourong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.281-294
    • /
    • 2015
  • Bolted joint connection is the most commonly used connection element in structures and devices. The loosening due to external dynamic loads cannot be observed and measured easily and may cause catastrophic loss especially in an extreme requirement and/or environment. In this paper, an innovative Real-time Cross-Correlation Method (RCCM) for monitoring of the bolted joint loosening was proposed. We apply time reversal process on stress wave propagation to obtain correlation signal. The correlation signal's peak amplitude represents the cross-correlation between the loosening state and the baseline working state; therefore, it can detect the state of loosening. Since the bolt states are uncorrelated with noise, the peak amplitude will not be affected by noise and disturbance while it increases SNR level and increases the measured signals' reliability. The correlation process is carried out online through physical wave propagation without any other post offline complicated analyses and calculations. We implemented the proposed RCCM on a single bolt/nut joint experimental device to quantitatively detect the loosening states successfully. After that we implemented the proposed method on a real large structure (reaction wall) with multiple bolted joint connections. Loosening indexes were built for both experiments to indicate the loosening states. Finally, we demonstrated the proposed method's great anti-noise and/or disturbance ability. In the instrumentation, we simply mounted Lead Zirconium Titanate (PZT) patches on the device/structure surface without any modifications of the bolted connection. The low-cost PZTs used as actuators and sensors for active sensing are easily extended to a sensing network for large scale bolted joint network monitoring.