• 제목/요약/키워드: Active Range Sensor

검색결과 109건 처리시간 0.028초

Virtual Environment Building and Navigation of Mobile Robot using Command Fusion and Fuzzy Inference

  • Jin, Taeseok
    • 한국산업융합학회 논문집
    • /
    • 제22권4호
    • /
    • pp.427-433
    • /
    • 2019
  • This paper propose a fuzzy inference model for map building and navigation for a mobile robot with an active camera, which is intelligently navigating to the goal location in unknown environments using sensor fusion, based on situational command using an active camera sensor. Active cameras provide a mobile robot with the capability to estimate and track feature images over a hallway field of view. In this paper, instead of using "physical sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data. Command fusion method is used to govern the robot navigation. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a command fusion technique is introduced, where the sensory data of active camera sensor for navigation experiments are fused into the identification process. Navigation performance improves on that achieved using fuzzy inference alone and shows significant advantages over command fusion techniques. Experimental evidences are provided, demonstrating that the proposed method can be reliably used over a wide range of relative positions between the active camera and the feature images.

Dual Sampling-Based CMOS Active Pixel Sensor with a Novel Correlated Double Sampling Circuit

  • Jo, Sung-Hyun;Bae, Myung-Han;Jung, Joon-Taek;Choi, Pyung;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제21권1호
    • /
    • pp.7-12
    • /
    • 2012
  • In this paper, we propose a 4-transistor active pixel sensor(APS) with a novel correlated double sampling(CDS) circuit for the purpose of extending dynamic range. Dual sampling techniques can overcome low-sensitivity and temporal disparity problems at low illumination. To accomplish this, two images are obtained at the same time using different sensitivities. The novel CDS circuit proposed in this paper contains MOS switches that make it possible for the capacitance of a conventional CDS circuit to function as a charge pump, so that the proposed APS exhibits an extended dynamic range as well as reduced noise. The designed circuit was fabricated by using $0.35{\mu}m$ 2-poly 4-metal standard CMOS technology and its characteristics have been evaluated.

물체의 반사성질이 능동형광센서에 미치는 영향에 관한 연구 (A Study on the Influence of the Object's Reflectance on the Active Range Finder)

  • 이철원;나석주
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.2944-2953
    • /
    • 1994
  • Active range finders using laser beam have been widely used for the factory automation and quality assurance, but they may be unreliable if the object' slope is steep or its surface is specular. The reliability of an active range finder was analyzed for the variation of the reflected laser beam intensity. First, the properties of the object's reflection were modeled by using the bidirectional reflectance-distribution function(BRDF), and then the variation of the laser beam brightness was formulated for the different configuratioin of the object and sensor. The experimental data of the laser beam reflection were obtained for two materials, mild steel and stainless steel. The parameters of the proposed model were obtained by fitting the data of the mild steel to the model and it was found that the results calculated from the proposed model were in good agreement with the experimental data.

무인기 충돌방지를 위한 레이다 센서 시스템 설계 (Radar Sensor System Concept for Collision Avoidance of Smart UAV)

  • 곽영길;강정완
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2003년도 종합학술발표회 논문집 Vol.13 No.1
    • /
    • pp.203-207
    • /
    • 2003
  • Due to the inherent nature of the low flying UAV, obstacle detection is a fundamental requirement in the flight path to avoid the collision from obstacles as well as manned aircraft. In this paper, a preliminary sensor requirements of an obstacle detection system for UAV in low-altitude flight are analyzed, and the automated obstacle detection sensor system is proposed assessing both passive and active sensors such as EO camera, IR, Laser radar, microwave and millimeter radar. In addition, TCAS (Traffic Alert and Collision Avoidance System) are reviewed for the collision avoidance of the manned aircraft system. It is suggested that small-sized radar sensor is the best candidate for the smart UAV because an active radar can provide the real-time informations on range and range rate in the all-weather environment. However, an important constraints on small UAV should be resolved in terms of accommodation of the mass, volume, and power allocated in the payload of the UAV system design requirements.

  • PDF

A SHIPBOARD MULTISENSOR SOLUTION FOR THE DETECTON OF FAST MOVING SMALL SURFACE OBJECTS

  • Ko, Hanseok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.174-177
    • /
    • 1995
  • Detecting a small threat object either fast moving or floating on shallow water presents a formidable challenge to shipboard sensor systems, which must determine whether or not to launch defensive weapons in a timely manner. An integrated multisensor concept is envisioned wherein the combined use of active and passive sensor is employed for the detection of short duration targets in dense ocean surface clutter to maximize detection range. The objective is to develop multisensor integration techniques that operate on detection data prior to track formation while simultaneously fusing contacts to tracks. In the system concept, detections from a low grazing angle search radar render designations to a sensor-search infrared sensor for target classification which in turn designates an active electro-optical sensor for sector search and target verification.

  • PDF

Dual-Sensitivity Mode CMOS Image Sensor for Wide Dynamic Range Using Column Capacitors

  • Lee, Sanggwon;Bae, Myunghan;Choi, Byoung-Soo;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제26권2호
    • /
    • pp.85-90
    • /
    • 2017
  • A wide dynamic range (WDR) CMOS image sensor (CIS) was developed with a specialized readout architecture for realizing high-sensitivity (HS) and low-sensitivity (LS) reading modes. The proposed pixel is basically a three-transistor (3T) active pixel sensor (APS) structure with an additional transistor. In the developed WDR CIS, only one mode between the HS mode for relatively weak light intensity and the LS mode for the strong light intensity is activated by an external controlling signal, and then the selected signal is read through each column-parallel readout circuit. The LS mode is implemented with the column capacitors and a feedback structure for adjusting column capacitor size. In particular, the feedback circuit makes it possible to change the column node capacitance automatically by using the incident light intensity. As a result, the proposed CIS achieved a wide dynamic range of 94 dB by synthesizing output signals from both modes. The prototype CIS is implemented with $0.18-{\mu}m$ 1-poly 6-metal (1P6M) standard CMOS technology, and the number of effective pixels is 176 (H) ${\times}$ 144 (V).

전자식 셔터와 A/D 변환기가 내장된 CMOS 능동 픽셀 센서 (A CMOS active pixel sensor with embedded electronic shutter and A/D converter)

  • 윤형준;박재현;서상호;이성호;도미영;최평;신장규
    • 센서학회지
    • /
    • 제14권4호
    • /
    • pp.272-277
    • /
    • 2005
  • A CMOS active pixel sensor has been designed and fabricated using standard 2-poly and 4-metal $0.35{\mu}m$ CMOS processing technology. The CMOS active pixel sensor has been made up of a unit pixel having a highly sensitive PMOSFET photo-detector and electronic shutters that can control the light exposure time to the PMOSFET photo-detector, correlated-double sampling (CDS) circuits, and an 8-bit two-step flash analog to digital converter (ADC) for digital output. This sensor can obtain a stable photo signal in a wide range of light intensity. It can be realized with a special function of an electronic shutter which controls the light exposure-time in the pixel. Moreover, this sensor had obtained the digital output using an embedded ADC for the system integration. The designed and fabricated image sensor has been implemented as a $128{\times}128$ pixel array. The area of the unit pixel is $7.60{\mu}m{\times}7.85{\mu}m$ and its fill factor is about 35 %.

Multi-scale wireless sensor node for health monitoring of civil infrastructure and mechanical systems

  • Taylor, Stuart G.;Farinholt, Kevin M.;Park, Gyuhae;Todd, Michael D.;Farrar, Charles R.
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.661-673
    • /
    • 2010
  • This paper presents recent developments in an extremely compact, wireless impedance sensor node (the WID3, $\underline{W}$ireless $\underline{I}$mpedance $\underline{D}$evice) for use in high-frequency impedance-based structural health monitoring (SHM), sensor diagnostics and validation, and low-frequency (< ~1 kHz) vibration data acquisition. The WID3 is equipped with an impedance chip that can resolve measurements up to 100 kHz, a frequency range ideal for many SHM applications. An integrated set of multiplexers allows the end user to monitor seven piezoelectric sensors from a single sensor node. The WID3 combines on-board processing using a microcontroller, data storage using flash memory, wireless communications capabilities, and a series of internal and external triggering options into a single package to realize a truly comprehensive, self-contained wireless active-sensor node for SHM applications. Furthermore, we recently extended the capability of this device by implementing low-frequency analog-to-digital and digital-to-analog converters so that the same device can measure structural vibration data. The compact sensor node collects relatively low-frequency acceleration measurements to estimate natural frequencies and operational deflection shapes, as well as relatively high-frequency impedance measurements to detect structural damage. Experimental results with application to SHM, sensor diagnostics and low-frequency vibration data acquisition are presented.

비접촉식 4-전극형 전기용량 센서를 이용한 in situ 정밀측정 (Precise in situ Measurement using Non-Contacting Capacitive Sensor with 4-Electrodes)

  • 이래덕
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.93-98
    • /
    • 1999
  • Non-contacting capacitive sensors, based on principle of the cross capacitor, for measuring small displacement less than 1.95$\pm$0.5 mm have been fabricated and characterized. To overcome disadvantages of the existed capacitive sensors, the new sensor is consisted of 4-electrodes which are formed 2 active electrodes and 2 guard electrodes on a sapphire plate with diameter 17mm and thickness 0.7 mm, and are symmetrically situated with constant gap of 0.2 mm among the electrodes. The sensor is evaluated to be correlation coefficient of 0.9987 for the range of 1.95$\pm$0.5 mm and that of 0.9995 for 1.95$\pm$0.25 mm range. This sensor can be used for in situ measurements in the mechanical mirror polishing with precision less than $\pm$1${\mu}{\textrm}{m}$.

  • PDF

비양기구로 운반되는 전계센서를 이용한 대기전계의 측정과 분석 (Measurement and Analysis of the Atmospheric Electric Field using Balloon-Carried E-Field Sensor)

  • 김승민;이복희
    • 조명전기설비학회논문지
    • /
    • 제30권2호
    • /
    • pp.78-84
    • /
    • 2016
  • This paper is focused on the measurement and analysis of an atmospheric electric field which is caused by thunderclouds. The electric field due to thunderclouds changes very slowly. For this reason, the extremely low frequency E-field sensor needs to be used for measuring the atmospheric electric field strength. The balloon-carried E-field sensor system with the time constant of 1sec was designed and fabricated. The electric field sensor consists of $100mm{\times}100mm$ copper plate, active integrator, high pass and low pass filters and batteries. The measurements of atmospheric electric fields were made by the balloon-carried E-field sensor and radiosonde, which sends the data back to ground in real time. From the calibration experiments, the response sensitivity of the E-field sensor was 0.154mV/kV/m in the frequency range of less than 1kHz. As a result from the actual experiment of the atmospheric electric field, the electric field signals were observed from the altitude of about 2.5km. Also, as the altitude was increased, the detected electric field wave oscillated with the fluctuation of sensing plate. The proposed method seems suitable for measurements of atmospheric electric fields, because it is inexpensive, simple to use and launch.