• Title/Summary/Keyword: Active Power Filters (APFs)

Search Result 21, Processing Time 0.023 seconds

Graphical Representation of the Instantaneous Compensation Power Flow for Single-Phase Active Power Filters

  • Jung, Young-Gook
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1380-1388
    • /
    • 2013
  • The conventional graphical representation of the instantaneous compensation power flow for single-phase active power filters(APFs) simply represents the active power flow and the reactive power flow which flowing between the power source and the active filter / the load. But, this method does not provide the information about the rectification mode and the compensation mode of APFs, especially, the loss for each mode was not considered at all. This is very important to understand the compensation operation characteristics of APFs. Therefore, this paper proposes the graphical representation of the instantaneous compensation power flow for single-phase APFs considering the instantaneous rectification mode and the instantaneous inversion mode. Three cases are verified in this paper - without compensation, with compensation of the active power 'p' and the fundamental reactive power 'q', and with compensation of only the distorted power 'h'. To ensure the validity of the proposed approach, PSIM simulation is achieved. As a result, we could confirm that the proposed approach was easy to explain the instantaneous compensation power flow considering the instantaneous rectification mode and the instantaneous inversion mode of APFs, also, Total Harmonic Distortion(THD)/Power Factor (P.F) and Fast Fourier Transform(FFT) analysis were compared for each case.

An Improved One Cycle Control for Active Power Filters under Non-Ideal Voltage Conditions

  • Wang, Lei;Ren, Chunguang;Yang, Yu;Han, Xiaoqing;Wang, Peng
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2350-2358
    • /
    • 2016
  • The one cycle control (OCC) scheme for active power filters (APFs) has shown excellent harmonic suppression and implementation simplicity. However, its real world application is limited because the non-ideal supply voltage for APFs can influence its performance so that the source currents are still distorted after compensation. This paper proposes a modified one cycle control (MOCC) scheme to improve the performance of three-phase shunt APFs under non-ideal supply voltage conditions. In this paper a detailed mathematical derivation has been presented and the key control law of the MOCC has been developed for adaption to the non-ideal supply voltages, following the control philosophy of simplicity. A relatively simple sequence filter is introduced to extract the harmonic components of supply voltages. The modified scheme can be easily implemented. The proposed control strategy has excellent performance and a 5kVA APF hardware platform has been implemented to validate the feasibility and performance of the proposed strategy.

Instantaneous Compensating Power Flow Graph of Active Power Filters Considering Rectification / Inversion Modes (정류와 역변환 모드를 고려한 능동전력필터의 순시 보상전력 흐름도)

  • 정영국;정찬수;배동관;안재영;김광헌;임영철
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.101-105
    • /
    • 1999
  • The goal of this paper is to present instantaneous compensating power flow of active power filters(APFs) by graphical method that could be practicable to compensate the power in both case of behaving in instantaneous rectifying mode and instantaneous inverting mode. To ensure the validity of the proposed method, computer simulation is achieved. Proposed method can be present more exquisite and physically meaningful power flow than conventional method in instantaneous compensating power flow Graph of APFs.

  • PDF

A Fuzzy Based Solution for Allocation and Sizing of Multiple Active Power Filters

  • Moradifar, Amir;Soleymanpour, Hassan Rezai
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.830-841
    • /
    • 2012
  • Active power filters (APF) can be employed for harmonic compensation in power systems. In this paper, a fuzzy based method is proposed for identification of probable APF nodes of a radial distribution system. The modified adaptive particle swarm optimization (MAPSO) technique is used for final selection of the APFs size. A combination of Fuzzy-MAPSO method is implemented to determine the optimal allocation and size of APFs. New fuzzy membership functions are formulated where the harmonic current membership is an exponential function of the nodal injecting harmonic current. Harmonic voltage membership has been formulated as a function of the node harmonic voltage. The product operator shows better performance than the AND operator because all harmonics are considered in computing membership function. For evaluating the proposed method, it has been applied to the 5-bus and 18-bus test systems, respectively, which the results appear satisfactorily. The proposed membership functions are new at the APF placement problem so that weighting factors can be changed proportional to objective function.

Parallel Control of Shunt Active Power Filters in Capacity Proportion Frequency Allocation Mode

  • Zhang, Shuquan;Dai, Ke;Xie, Bin;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.419-427
    • /
    • 2010
  • A parallel control strategy in capacity proportion frequency allocation mode for shunt active power filters (APFs) is proposed to overcome some of the difficulties in high power applications. To improve the compensation accuracy and overall system stability, an improved selective harmonic current control based on multiple synchronous rotating reference coordinates is presented in a single APF unit, which approximately implements zero steady-state error compensation. The combined decoupling strategy is proposed and theoretically analyzed to simplify selective harmonic current control. Improved selective harmonic current control forms the basis for multi-APF parallel operation. Therefore, a parallel control strategy is proposed to realize a proper optimization so that the APFs with a larger capacity compensate more harmonic current and the ones with a smaller capacity compensate less harmonic current, which is very practical for accurate harmonic current compensation and stable grid operation in high power applications. This is verified by experimental results. The total harmonic distortion (THD) is reduced from 29% to 2.7% for a typical uncontrolled rectifier load with a resistor and an inductor in a laboratory platform.

Deadbeat Control with a Repetitive Predictor for Three-Level Active Power Filters

  • He, Yingjie;Liu, Jinjun;Tang, Jian;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.583-590
    • /
    • 2011
  • Three-level NPC inverters have been put into practical use for years especially in high voltage high power grids. This paper researches three-level active power filters (APFs). In this paper a mathematical model in the d-q coordinates is presented for 3-phase 3-wire NPC APFs. The deadbeat control scheme is obtained by using state equations. Canceling the delay of one sampling period and providing the predictive value of the harmonic current is a key problem of the deadbeat control. Based on this deadbeat control, the predictive output current value is obtained by the state observer. The delay of one sampling period is remedied in this digital control system by the state observer. The predictive harmonic command current value is obtained by the repetitive predictor synchronously. The repetitive predictor can achieve a better prediction of the harmonic current with the same sampling frequency, thus improving the overall performance of the system. The experiment results indicate that the steady-state accuracy and the dynamic response are both satisfying when the proposed control scheme is implemented.

Control Strategies for Multilevel APFs Based on the Windowed-FFT and Resonant Controllers

  • Han, Yang
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.509-517
    • /
    • 2012
  • This paper presents control strategies for cascaded H-bridge multilevel active power filters (APFs). A current loop controller is implemented using a proportional-resonant (PR) regulator, which achieves zero steady-state error at target frequencies. The power balancing mechanism for the dc-link capacitor voltages is analyzed and a voltage balancing controller is presented. To mitigate the picket-fence effect of the conventional FFT algorithm under asynchronous sampling conditions, the Hanning Windowed-FFT algorithm is proposed for reference current generation (RCG). This calculates the frequency, amplitude and phase of individual harmonic components accurately and as a result, selective harmonic compensation (SHC) is achieved. Simulation and experimental results are presented, which verify the validity and effectiveness of the devised control algorithms.

PI and Fuzzy Logic Controller Based 3-Phase 4-Wire Shunt Active Filters for the Mitigation of Current Harmonics with the Id-Iq Control Strategy

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.914-921
    • /
    • 2011
  • Commencing with incandescent light bulbs, every load today creates harmonics. Unfortunately, these loads vary with respect to their amount of harmonic content and their response to problems caused by harmonics. The prevalent difficulties with harmonics are voltage and current waveform distortions. In addition, Electronic equipment like computers, battery chargers, electronic ballasts, variable frequency drives, and switching mode power supplies generate perilous amounts of harmonics. Issues related to harmonics are of a greater concern to engineers and building designers because they do more than just distort voltage waveforms, they can overheat the building wiring, cause nuisance tripping, overheat transformer units, and cause random end-user equipment failures. Thus power quality is becoming more and more serious with each passing day. As a result, active power filters (APFs) have gained a lot of attention due to their excellent harmonic compensation. However, the performance of the active filters seems to have contradictions with different control techniques. The main objective of this paper is to analyze shunt active filters with fuzzy and pi controllers. To carry out this analysis, active and reactive current methods ($i_d-i_q$) are considered. Extensive simulations were carried out. The simulations were performed under balance, unbalanced and non sinusoidal conditions. The results validate the dynamic behavior of fuzzy logic controllers over PI controllers.

A New Synchronous Reference Frame-Based Method for Single-Phase Shunt Active Power Filters

  • Monfared, Mohammad;Golestan, Saeed;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.692-700
    • /
    • 2013
  • This paper discusses the design of a novel synchronous reference frame (SRF) method that can extract the reference compensating current for single-phase shunt active power filters (APFs). Unlike previous SRF studies, the proposed method has an innovative feature that does not require a fictitious current signal. Other key features of the proposed strategy include frequency-independent operation, accurate reference current extraction, and relatively fast transient response. The effectiveness of the proposed method is investigated by conducting a detailed mathematical analysis. Results of the analysis confirm the superior performance of the suggested approach. Theoretical evaluations are confirmed by the experimental results.

Simplified Control Scheme of Unified Power Quality Conditioner based on Three-phase Three-level (NPC) inverter to Mitigate Current Source Harmonics and Compensate All Voltage Disturbances

  • Salim, Chennai;Toufik, Benchouia Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.544-558
    • /
    • 2013
  • This paper proposes a simplified and efficient control scheme for Unified Power Quality Conditioner (UPQC) based on three-level (NPC) inverter capable to mitigate source current harmonics and compensate all voltage disturbances perturbations such us, voltage sags, swells, unbalances and harmonics. The UPQC is designed by the integration of series and shunt active filters (AFs) sharing a common dc bus capacitor. The dc voltage is maintained constant using proportional integral voltage controller. The shunt and series AF are designed using a three-phase three-level (NPC) inverter. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt and the power reactive theory (PQ) for a series APFs. The reference signals for the shunt and series APF are derived from the control algorithm and sensed signals are injected in tow controllers to generate switching signals for series and shunt APFs. The performance of proposed UPQC system is evaluated in terms of power factor correction and mitigation of voltage, current harmonics and all voltage disturbances compensation in three-phase, three-wire power system using MATLAB-Simulink software and SimPowerSystem Toolbox. The simulation results demonstrate that the proposed UPQC system can improve the power quality at the common connection point of the non-linear load.