• Title/Summary/Keyword: Active Phase Array Radar

Search Result 29, Processing Time 0.027 seconds

Development of Radar Environmental Signals Simulator for Simulating Sub-array Receiving Signals of Active Phased Array Multi-function Radar (능동위상배열 다기능레이다의 부배열 수신신호 모의를 위한 레이다환경신호모의장비 개발)

  • Kim, Gukhyun;Yoo, Kyungjoo;Lee, Kyungmin;Gil, Sungjun;Yang, Eunho;Lee, Kwangchul;Lee, Heeyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.452-458
    • /
    • 2020
  • In this paper, the contents of the development of RESS(Radar Environmental Signals Simulator) for the test of active phased array multi-function radar are described. The developed RESS can simulate multiple target environments, such as target/jamming/missile response/cluster signals, by using received radar operational information and simulated scenario. It can also modulate frequency, phase, gain, timing on all waveforms operated by multi-function radar and simulated two targets and one jamming in the beam. The RESS can be used to perform functional and performance verification of the active phased array multi-function radar with sub-array receiving structures.

Study on TRX Channel Amplitude and Phase Calibration Method for a Radar Wind Profiler Based on 256 Active Phased Array (256 능동위상배열 기반 연직바람 관측장비의 송수신 채널 크기 및 위상 보정 방법 연구)

  • Jung, Woo-Jae;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.162-170
    • /
    • 2022
  • In this paper, the phased-array transceiver (TRX) channel amplitude and phase calibration method for a radar wind profiler (RWP) based on the 256 active phased array is discussed. Without the additional module, the TX and RX calibration paths were secured using couplers and switches in the TRX front ends and the TRX switching duplexers, and the amplitude and phase of the 256 TRX were calibrated using a gain and phase detector. The beam widths and side lobes of five beams (vertical, east, west, south, and north) of the calibrated 256 active phased array antenna were confirmed by a near-field which agreed well with the simulation results. The proposed calibration method can be easily applied to a system based on an active phased array operated in an outdoor environment.

Wide Beam Design of a Fully Digital Active Array Radar Using Convex Optimization with Only Phase Control (위상 조정 Convex 최적화 알고리즘을 이용한 완전 디지털 능동배열레이다의 광역빔 설계)

  • Yang, Woo-Yong;Lee, Hyun-Seok;Yang, Sung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.479-486
    • /
    • 2019
  • The fully digital active array radar uses a wide beam for effective mission performance within a limited time. This paper presents a convex optimization algorithm that adjusts only the phase of an array element. First, the algorithm applies a semidefinite relaxation technique to relax the constraint and convert it to a convex set. Then, the constraint is set so that the amplitude is fixed to some extent and the phase is variable. Finally, the optimization is performed to minimize the sum of the eigenvalues obtained through eigenvalue decomposition. Compared to the application results of the existing genetic algorithm, the proposed algorithm is more effective in wide beam design for a fully digital active array radar.

Design of Sub-array Receiver for Active Phase Array Radar (능동위상배열 레이더 부배열 수신기 설계)

  • Yi, Hui-min;Kim, Do-hoon;Han, Il-tak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.568-573
    • /
    • 2019
  • Modern Radars are evolving into MFRs which can search multiple targets simultaneously and then track them. Additionally they should be able to avoid some external jamming signals. Applying to these MFRs, Antennas should be able to perform DBF including to not only real-time beam steering but also multi-beam forming simultaneously. And they can cancel the beam at the specific direction. In this paper, we describe the implementation of sub-array type antenna hardware which can be applying DBF. Also we propose the modified amplitude aperture distribution for suppressing the side lobe level and explain the sub-array receiver design with amplitude tapering. It consists in making the amplitude weighting in 2 steps. In order to compare two weighting cases, we investigate the G/T performance for the array antenna. At the conclusion, we make a comparative study for the dynamic range of every sub-array receiver and present the hardware implementation that is more advantageous for sub-array alignment and calibration in DBF.

8.2-GHz band radar RFICs for an 8 × 8 phased-array FMCW receiver developed with 65-nm CMOS technology

  • Han, Seon-Ho;Koo, Bon-Tae
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.943-950
    • /
    • 2020
  • We propose 8.2-GHz band radar RFICs for an 8 × 8 phased-array frequency-modulated continuous-wave receiver developed using 65-nm CMOS technology. This receiver panel is constructed using a multichip solution comprising fabricated 2 × 2 low-noise amplifier phase-shifter (LNA-PS) chips and a 4ch RX front-end chip. The LNA-PS chip has a novel phase-shifter circuit for low-voltage operation, novel active single-to-differential/differential-to-single circuits, and a current-mode combiner to utilize a small area. The LNA-PS chip shows a power gain range of 5 dB to 20 dB per channel with gain control and a single-channel NF of 6.4 dB at maximum gain. The measured result of the chip shows 6-bit phase states with a 0.35° RMS phase error. The input P1 dB of the chip is approximately -27.5 dBm at high gain and is enough to cover the highest input power from the TX-to-RX leakage in the radar system. The gain range of the 4ch RX front-end chip is 9 dB to 30 dB per channel. The LNA-PS chip consumes 82 mA, and the 4ch RX front-end chip consumes 97 mA from a 1.2 V supply voltage. The chip sizes of the 2 × 2 LNA-PS and the 4ch RX front end are 2.39 mm × 1.3 mm and 2.42 mm × 1.62 mm, respectively.

Miniaturization Development of Transmit/Receive Module using a 10W MEMS switch (10W급 MEMS 스위치를 이용한 송수신모듈 소형화 개발)

  • Yi, Hui-min;Jun, Byoung-chul;Lee, Bok-hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2417-2424
    • /
    • 2016
  • Small size and light weight is very important for components used in radar mounted platform such as airborne radar. Recently, the active phased array radar is developed as an array of antennas for thousands of transmit/receive modules to be used as a multi-function radar that can detect and track targets. In this case, the size and weight of the transmit/receive modules are critical factor for developing the radar. In this paper, we developed a compact transmit/receive module using the 10W RF MEMS switch domestically localizing and reduced the circuit area to about 86.5% compared to using a circulator. The developed module satisfies not only electrical requirements but also MIL-STD's environmental specifications. So it can be used in a military device. It can be used at adaptive tunable receivers, reconfigurable smart active antennas and wide band beam electrical steering antennas.

Dwell Time Optimization of Alert-Confirm Detection for Active Phased Array Radars

  • Kim, Eun Hee;Park, JoonYong
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.2
    • /
    • pp.107-114
    • /
    • 2019
  • Alert-confirm detection is a highly efficient method to improve phased array radar search performance. It comprises sequential detection in two steps: alert detection, in which a target is detected at a low detection threshold, and confirm detection, which is triggered by alert detection with a longer dwell time to minimize false alarms. This paper provides a design method for applying the alert-confirm detection to multifunctional radars. We find optimum dwell times and false alarm probabilities for each alert detection and confirm detection under the dual constraints of total false alarm probability and maximum allowable dwell time per position. These optimum values are expressed as a function of the mean new target appearance rate. The proposed alert-confirm detection increases the maximum detection range even with a shorter frame time than that of uniform scanning.

Development of Planar Active Phased Array Antenna for Detecting and Tracking Radar (화포탐지 레이다용 C-대역 평면형 능동위상배열 안테나 개발)

  • Kim, Ki-Ho;Kim, Hyun;Kim, Dong-Yoon;Jin, Hyung-Suk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.12
    • /
    • pp.924-934
    • /
    • 2018
  • This paper describes the development and measurement results of C-band planar active phase array antenna for detecting and tracking radar(weapon-locating radar). The antenna is designed with 14 sub-arrays(12 main channels and 2 sidelobe blanking channels and approximately 3,000 elements of transmit-receive channel) to generate transmit and digital receive patterns. Using a near-field measurements facility, G/N, transmit patterns, and received patterns are measured. Receive patterns are implemented with digital beamforming by signal processing. The measurement results demonstrate that antenna design specifications were fulfilled.

A Study of T/R Module Output Compensation Method for Active Synthetic Aperture Radar (능동형 SAR 시스템의 송수신 모듈 출력 보정 방법 연구)

  • Yi, Dong-Woo;Lee, Jong-Hwan;Kim, Se-Young;Jeon, Byoung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.955-964
    • /
    • 2010
  • In this paper, a compensation method of the amplitude and phase errors from the T/R(Transmit/Receive) modules in an active SAR(Synthetic Aperture Radar) system is introduced. The errors are defined and classified, and characterized by analyzing the measurement data acquired from the pilot test. To compensate these errors, a control methodology of T/R modules output is proposed. Before the compensation is applied, 16 T/R modules integrated on the active SAR antenna show the amplitude in 28.2~29.0 dBm and the phase in $101.7^{\circ}{\sim}165.2^{\circ}$. After the compensation, the amplitude and phase are distributed in 27.4~28.0 dBm and $116.1^{\circ}{\sim}120.0^{\circ}$ respectively. The antenna beam patterns generated by the array theory with the distributions are compared, and the proposed method is verified as good to apply for the active SAR system.

Design and Performance Verification of Active Phased Array Antenna Near-Field Scanner with Mobility (이동성을 구비한 능동위상배열안테나 근접전계 스캐너 설계 및 성능 검증)

  • Yoo, Woo-Sung;Kim, Sung-Gyun;Kwon, Yong-Wook;Jung, Gi-Young;Jang, Heon-Soon
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.30-38
    • /
    • 2017
  • It is necessary to check the fault of phased array antenna, when the active phased array radar installed in the site is suspected performance degradation due to external impact or long-term operation. However, the near-field test should be performed in anechoic chamber in order to measure the phased array antenna, so that much time and cost must be applied for radar disassembly and transportation, and the operational availability of the radar system is deteriorates. Therefore, we propose a near-field scanner with mobility to check the fault of the phased array antenna at the site, and the effectiveness of the proposed scanner was verified with ${\pm}0.5dB$ magnitude and ${\pm}1.5^{\circ}$ phase in comparison with measured data in anechoic chamber.