• Title/Summary/Keyword: Active Illumination

Search Result 94, Processing Time 0.025 seconds

Characteristics of Polymer Solar Cells Depending on the Thickness of Active Layer

  • Lee, Dong-Gu;Noh, Seung-Uk;Suman, C.K.;Kim, Jun-Young;Lee, Seong-Hoon;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1204-1207
    • /
    • 2009
  • We investigated the device performance of bulk heterojunction solar cells depending on the active layer thickness. For the systematic comparison, the polymer solar cells comprising RR-P3HT:PCBM (1:0.8 (wt%:wt%)) blend films with different thickness were characterized by impedance spectroscopy, and J-V measurement in dark and solar simulated illumination. The device with 120 nm thickness of active layer exhibited maximum power conversion efficiency of 3.5 % under AM 1.5 100mW/$cm^2$ illumination condition.

  • PDF

A Review of Aircraft Camouflage Techniques to Reduce Visual Detection (항공기 시각 탐지 감소 위장기술 고찰)

  • Jin, Wonjin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.630-636
    • /
    • 2020
  • This study reviewed camouflage techniques to reduce the visual detect-ability of aircraft. Visual camouflage can be defined as the process of making objects less visible. Aircraft visual camouflage delays detection of the aircraft position, speed, and flight direction. Multi-tone and counter-shaded schemes are generally adopted as camouflage patterns for close-air-support aircraft and air-superiority aircraft, respectively. Another study showed that the monotone scheme is also efficient when the hue and brightness of the camouflage color are controlled correctly. Active camouflage techniques for aircraft have been studied to increase the camouflage effectiveness. In particular, counter-illumination techniques using electroluminescence devices can minimize the difference in brightness between the aircraft and sky background. Active camouflage techniques are expected to enhance the survivability of low-altitude UAVs, which are vulnerable to visual detection.

Real Time 3D Face Pose Discrimination Based On Active IR Illumination (능동적 적외선 조명을 이용한 실시간 3차원 얼굴 방향 식별)

  • 박호식;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.727-732
    • /
    • 2004
  • In this paper, we introduce a new approach for real-time 3D face pose discrimination based on active IR illumination from a monocular view of the camera. Under the IR illumination, the pupils appear bright. We develop algorithms for efficient and robust detection and tracking pupils in real time. Based on the geometric distortions of pupils under different face orientations, an eigen eye feature space is built based on training data that captures the relationship between 3D face orientation and the geometric features of the pupils. The 3D face pose for an input query image is subsequently classified using the eigen eye feature space. From the experiment, we obtained the range of results of discrimination from the subjects which close to the camera are from 94,67%, minimum from 100%, maximum.

An Efficient Algorithm for 3-D Range Measurement using Disparity of Stereoscopic Camera (스테레오 카메라의 양안 시차를 이용한 거리 계측의 고속 연산 알고리즘)

  • 김재한
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1163-1168
    • /
    • 2001
  • The ranging systems measure range data in three-dimensional coordinate from target surface. These non-contact remote ranging systems is widely used in various automation applications, including military equipment, construction field, navigation, inspection, assembly, and robot vision. The active ranging systems using time of flight technique or light pattern illumination technique are complex and expensive, the passive systems based on stereo or focusing principle are time-consuming. The proposed algorithm, that is based on cross correlation of projection profile of vertical edge, provides advantages of fast and simple operation in the range acquisition. The results of experiment show the effectiveness of the proposed algorithm.

  • PDF

Illumination Invariant Ranging Sensor Based on Structured Light Image (조명잡음에 강인한 구조광 영상기반 거리측정 센서)

  • Shin, Jin;Yi, Soo-Yeong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.122-130
    • /
    • 2010
  • This paper presents an active ranging system based on laser structured-light image. The structured-light image processing is computationally efficient in comparison with the conventional stereo image processing, since the burdensome correspondence problem is avoidable. In order to achieve robustness against environmental illumination noise, an efficient image processing algorithm, i.e., integration of difference images with structured-light modulation is proposed. Distance equation from the measured structured light pixel distance and system parameter calibration are addressed in this paper. Experiments and analysis are carried out to verify performance of the proposed ranging system.

Fitting Enhancement of AAM Using Synthesized Illumination Images (조명 영상 합성을 통한 AAM 피팅 성능 개선)

  • Lee, Hyung-Soo;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.409-414
    • /
    • 2007
  • Active Appearance Model is a well-known model that can represent a non-rigid object effectively. However, since it uses the fixed appearance model, the fitting results are often unsatisfactory when the imaging condition of the target image is different from that of training images. To alleviate this problem, incremental AAM was proposed which updates its appearance bases in an on-line manner. However, it cannot deal with the sudden changes of illumination. To overcome this, we propose a novel scheme to update the appearance bases. When a new person appears in the input image, we synthesize illuminated images of that person and update the appearance bases of AAM using it. Since we update the appearance bases using synthesized illuminated images in advance, the AAM can fit their model to a target image well when the illumination changes drastically. The experimental results show that our proposed algorithm improves the fitting performance over both the incremental AAM and the original AAM.

  • PDF

The Instability Behaviors of Spray-pyrolysis Processed nc-ZnO/ZnO Field-effect Transistors Under Illumination (스프레이 공정을 이용한 nc-ZnO/ZnO 전계효과트랜지스터의 광학적 노출에 대한 열화 현상 분석)

  • Junhee Cho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.78-82
    • /
    • 2023
  • Metal oxide semiconductor (MOS) adapting spray-pyrolysis deposition technique has drawn large attention based on their high quality of intrinsic and electrical properties in addition to simple and low-cost processibility. To fully utilize the merits of MOS field-effect transistors (FETs) , transparency, it is important to understand the instability behaviors of FETs under illumination. Here, we studied the photo-induced properties of nc-ZnO/ZnO field-effect transistors (FETs) based on spray-pyrolysis under illumination which incorporating ZnO nanocrystalline nanoparticles into typical ZnO precursor. Our experiments reveal that nc-ZnO in active layer suppressed the light instabilities of FETs.

  • PDF

Utilization Efficiencies of Electric Energy and Photosynthetically Active Radiation of Lettuce Grown under Red LED, Blue LED and Fluorescent Lamps with Different Photoperiods

  • Lee, Hye In;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.279-286
    • /
    • 2013
  • Purpose: This study was conducted to analyze the utilization efficiencies of electric energy and photosynthetically active radiation of lettuce grown under red LED, blue LED and fluorescent lamps with different photoperiods. Methods: Red LED with peak wavelength of 660 nm and blue LED with peak wavelength of 450 nm were used to analyze the effect of three levels of photoperiod (12/12 h, 16/8 h, 20/4 h) of LED illumination on light utilization efficiency of lettuce grown hydroponically in a closed plant production system (CPPS). Cool-white fluorescent lamps (FL) were used as the control. Photosynthetic photon flux, air temperature and relative humidity in CPPS were maintained at 230 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $22/18^{\circ}C$ (light/darkness), and 70%, respectively. Electric conductivity and pH were controlled at 1.5-1.8 $dS{\cdot}m^{-1}$ and 5.5-6.0, respectively. The light utilization efficiency based on the chemical energy converted by photosynthesis, the accumulated electric energy consumed by artificial lighting sources, and the accumulated photosynthetically active radiation illuminated from artificial lighting sources were calculated. Results: As compared to the control, we found that the accumulated electric energy consumption decreased by 75.6% for red LED and by 70.7% for blue LED. The accumulated photosynthetically active radiation illuminated from red LED and blue LED decreased by 43.8% and 33.5%, respectively, compared with the control. The electric energy utilization efficiency (EEUE) of lettuce at growth stage 2 was 1.29-2.06% for red LED, 0.76-1.53% for blue LED, and 0.25-0.41% for FL. The photosynthetically active radiation utilization efficiency (PARUE) of lettuce was 6.25-9.95% for red LED, 3.75-7.49% for blue LED, and 2.77-4.62% for FL. EEUE and PARUE significantly increased with the increasing light period. Conclusions: From these results, illumination time of 16-20 h in a day was proposed to improve the light utilization efficiency of lettuce grown in a plant factory.

Active Shape Model-based Object Tracking using Depth Sensor (깊이 센서를 이용한 능동형태모델 기반의 객체 추적 방법)

  • Jung, Hun Jo;Lee, Dong Eun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.141-150
    • /
    • 2013
  • This study proposes technology using Active Shape Model to track the object separating it by depth-sensors. Unlike the common visual camera, the depth-sensor is not affected by the intensity of illumination, and therefore a more robust object can be extracted. The proposed algorithm removes the horizontal component from the information of the initial depth map and separates the object using the vertical component. In addition, it is also a more efficient morphology, and labeling to perform image correction and object extraction. By applying Active Shape Model to the information of an extracted object, it can track the object more robustly. Active Shape Model has a robust feature-to-object occlusion phenomenon. In comparison to visual camera-based object tracking algorithms, the proposed technology, using the existing depth of the sensor, is more efficient and robust at object tracking. Experimental results, show that the proposed ASM-based algorithm using depth sensor can robustly track objects in real-time.

Collaborative Local Active Appearance Models for Illuminated Face Images (조명얼굴 영상을 위한 협력적 지역 능동표현 모델)

  • Yang, Jun-Young;Ko, Jae-Pil;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.816-824
    • /
    • 2009
  • In the face space, face images due to illumination and pose variations have a nonlinear distribution. Active Appearance Models (AAM) based on the linear model have limits to the nonlinear distribution of face images. In this paper, we assume that a few clusters of face images are given; we build local AAMs according to the clusters of face images, and then select a proper AAM model during the fitting phase. To solve the problem of updating fitting parameters among the models due to the model changing, we propose to build in advance relationships among the clusters in the parameter space from the training images. In addition, we suggest a gradual model changing to reduce improper model selections due to serious fitting failures. In our experiment, we apply the proposed model to Yale Face Database B and compare it with the previous method. The proposed method demonstrated successful fitting results with strongly illuminated face images of deep shadows.