• Title/Summary/Keyword: Active Hysteresis

Search Result 82, Processing Time 0.033 seconds

Research for Optimal Operation of Switched Reluctance Motors (스위치드 릴럭턴스 전동기 최적운전을 위한 연구)

  • Sungin Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.143-148
    • /
    • 2023
  • Among the characteristics of SRM, due to nonlinearity, it is difficult to properly operate to form maximum torque and minimum torque pulsation. In addition, in the case of fixed switching angle control, torque formation according to speed variation is unstable, thereby reducing efficiency. Therefore, active switching angle control according to speed variation is required. Therefore, active switching angle control according to speed variation is required. In this paper, a method for improving driving performance by reducing torque ripple by automatic control of the advance angle and increasing output torque was sought from the problem caused by the nonlinearity of the SRM. In addition, the optimal operation of SRM due to the switching variable according to the performance of the hysteretic current controller was examined.

An Improved SVPWM Control of Voltage Imbalance in Capacitors of a Single-Phase Multilevel Inverter

  • Ramirez, Fernando Arturo;Arjona, Marco A.
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1235-1243
    • /
    • 2015
  • This paper presents a modified Space Vector Pulse Width Modulation Technique (SVPWM), which solves the well-known problem of voltage imbalance in the capacitors of a single-phase multilevel inverter. The proposed solution is based on the measurement of DC voltage levels at each capacitor of the inverter DC bus. The measurements are then used to adjust the size of the active vectors within the SVPWM algorithm to keep the voltage waveform sinusoidal regardless of any voltage imbalance on the DC link capacitors. When a voltage deviation exceeds a predetermined hysteresis band, the correspondent voltage vector is restricted to restore the voltage level to an acceptable threshold. Hence, the need for external voltage regulators for the voltage capacitors is eliminated. The functionality of the proposed algorithm is successfully demonstrated through simulations and experiments on a grid tied application.

A Study on the Mechanism of the Robot Hand based on the Segment Binary Control (구간분할 바이너리 제어기반 로봇핸드의 메커니즘에 관한 연구)

  • Jeong S.H.;Cha K.R.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1232-1235
    • /
    • 2005
  • In recent years, as the robot technology is developed the researches on the artificial muscle actuator that enable robot to move dextrously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electroactive polymer. These actuators have the higher energy density than the electromechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper the segmented binary control for reducing the hysteresis of SMA is proposed and the simulation of anthropomorphic robotic hand is performed using ADAMS.

  • PDF

Simulink-based Modelling and Simulation for a Single-phase UPFC (Simulink를 이용한 단상 UPFC 모델링 및 시뮬레이션)

  • Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.523-530
    • /
    • 2009
  • This paper presents a study on a small scale single-phase UPFC preliminary researches on power quality compensating schemes of electrical railway. As the UPFC is very complicated power-electronic system consisting of grid-connected transformers, four single phase inverters interconnected with dc-link capacitors and various electrical apparatuses, multiple controllers and control algorithms are needed, and entire UPFC has been modelled in the form of block diagrams and simulated by using Simulink. The main purpose of the compensating system is to manage reactive and active powers with the four single phase inverters, so, the control effort has been focused on the power flow control and has been realized through the hysteresis current control of the single phase inverters. And transport-delayed PLL with additional delay-time compensating term has been used to synchronize a grid voltage and the simulation results have shown that the compensating term could improve PLL performance under some frequency variation of the voltage.

A Study on the development of Harmonic reduction filter system from PLC control system (PLC제어 시스템에 의한 고조파 제거용 필터 시스템 개발에 관한 연구)

  • An, Hyo-Seop;Shin, Kwan-Woo;Ko, Seok-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.234-236
    • /
    • 2006
  • In this paper, APF(Active Power Filter) will be treated in order to improve the output current distortion of the AC source. APF generates the harmonic current which contributes to a source side harmonic reduction. We can extract the compensating current of the parallel APF with phase transformations and the proposed current control method. Therefore, the calculation times is short and the control method is simple compared with conventional hysteresis methods. Experimental results verify that the system using the proposed method appers a good performance.

  • PDF

Detection of Magnetic Nanoparticles and Fe-hemoglobin inside Red Blood Cells by Using a Highly Sensitive Spin Valve Device

  • Park, Sang-Hyun;Soh, Kwang-Sup;Hwang, Do-Guwn;Rhee, Jang-Roh;Lee, Sang-Suk
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.30-33
    • /
    • 2008
  • A highly sensitive, giant magnetoresistance-spin valve (GMR-SV) biosensing device with high linearity and very low hysteresis was fabricated by photolithography. The detection of magnetic nanoparticles and Fe-hemoglobin inside red blood cells using the GMR-SV biosensing device was investigated. When a sensing current of 1 mA was applied to the current electrode in the patterned active devices with an area of $2{\times}6{\mu}m^2$, the output signals were about 13.35 mV. The signal from even one drop of human blood and nanoparticles in distilled water was sufficient for their detection and analysis.

Optimal Switching Pattern and Harmonic Analysis for Single-Phase Current-Controlled Converter (단상 전류제어형 컨버터의 최적 스위칭패턴과 고조파 해석)

  • Park, Ki-Won;Woo, Myeong-Ho;Jeong, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.121-125
    • /
    • 1993
  • This paper proposes two kinds of novel switching method for a single phase current-controlled voltage-type ac-to-dc converter. Proposed are modifications of the conventional hysteresis current control, and are named by the half suppressing method and unipolar method, respectively. The first one suppresses an inactive half of the four switching signals and uses active another half for current control. The second method uses only one, a quarter of switching signals suppresed the others. Both the simulation and experimental results show that proposed methods are more efficient in switch utilization and have comparable or better performance when compared with conventional method.

  • PDF

Simultaneous active strain and ultrasonic measurement using fiber acoustic wave piezoelectric transducers

  • Lee, J.R.;Park, C.Y.;Kong, C.W.
    • Smart Structures and Systems
    • /
    • v.11 no.2
    • /
    • pp.185-197
    • /
    • 2013
  • We developed a simultaneous strain measurement and damage detection technique using a pair of surface-mounted piezoelectric transducers and a fiber connecting them. This is a novel sensor configuration of the fiber acoustic wave (FAW) piezoelectric transducer. In this study, lead-zirconate-titanate (PZT) transducers are installed conventionally on a plate's surface, which is a technique used in many structural health monitoring studies. However, our PZTs are also connected with an optical fiber. A FAW and Lamb wave are simultaneously guided in the optical fiber and the structure, respectively. The dependency of the time-of-flight of the FAW on the applied strain is quantified for strain sensing. In our experimental results, the FAW exhibited excellent linear behavior and no hysteresis with respect to the change in strain. On the other hand, the well-known damage detection function of the surface-mounted PZT transducers was still available by monitoring the waveform change in the conventional Lamb wave ultrasonic path.

A study on Dynamic Characteristics of the Robot Hand Using the Segmented Binary Control (구간분할 바이너리 제어를 이용한 로봇핸드의 동특성에 관한 연구)

  • Jeong Sanghwa;Cha Kyoungrae;Kim Hyunuk;Choi Sukbong;Kim Gwangho;Park Juneho
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.144-149
    • /
    • 2005
  • In recent years, as the robot technology is developed the researches on the artificial muscle actuator that enable robot to move dextrously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electroactive polymer. These actuators have the higher energy density than the electromechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper the segmented binary control for reducing the hysteresis of SMA is proposed and the simulation of anthropomorphic robotic hand is performed using ADAMS.

  • PDF

Magnetorheological elastomer base isolator for earthquake response mitigation on building structures: modeling and second-order sliding mode control

  • Yu, Yang;Royel, Sayed;Li, Jianchun;Li, Yancheng;Ha, Quang
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.943-966
    • /
    • 2016
  • Recently, magnetorheological elastomer (MRE) material and its devices have been developed and attracted a good deal of attention for their potentials in vibration control. Among them, a highly adaptive base isolator based on MRE was designed, fabricated and tested for real-time adaptive control of base isolated structures against a suite of earthquakes. To perfectly take advantage of this new device, an accurate and robust model should be built to characterize its nonlinearity and hysteresis for its application in structural control. This paper first proposes a novel hysteresis model, in which a nonlinear hyperbolic sine function spring is used to portray the strain stiffening phenomenon and a Voigt component is incorporated in parallel to describe the solid-material behaviours. Then the fruit fly optimization algorithm (FFOA) is employed for model parameter identification using testing data of shear force, displacement and velocity obtained from different loading conditions. The relationships between model parameters and applied current are also explored to obtain a current-dependent generalized model for the control application. Based on the proposed model of MRE base isolator, a second-order sliding mode controller is designed and applied to the device to provide a real-time feedback control of smart structures. The performance of the proposed technique is evaluated in simulation through utilizing a three-storey benchmark building model under four benchmark earthquake excitations. The results verify the effectiveness of the proposed current-dependent model and corresponding controller for semi-active control of MRE base isolator incorporated smart structures.