• Title/Summary/Keyword: Active Damper

Search Result 458, Processing Time 0.027 seconds

Design and Application of Magnetic Damper for Reducing Rotor Vibration (회전체 진동 감소를 위한 마그네틱 댐퍼의 설계 및 응용)

  • Kim, Young-Bae;Yi, Hyeong-Bok;Lee, Bong-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.355-361
    • /
    • 2000
  • In this study, active control magnetic actuator for reducing vibration of rotor system is performed. Identification, modeling, simulation, control system design, and evaluation of active magnetic damper system have been researched. Power amplifier modeling, connected magnetic actuator and augmented by system identification, is included to establish a magnetic damper simulation which provides close performance correspondence to the physical plant. A magnetic actuator, digital controller using DSP(Digital Signal Processor), and bipolar operational power supply/amplifiers are developed to show the effectiveness of reducing rotor vibration. Also the curve fitting procedure to obtain the transfer function of frequency dependent components is developed. Two kinds of test are executed as sliding and oil bearing. Results presented in this paper will provide a well-defined technical parameters in designing magnetic damper system for the proposed rotor.

Decentralized Control of Building Structures Installed with Semi-active MR Damper (준능동 MR 댐퍼가 설치된 건축 구조물의 분산제어)

  • Youn, Kyung-Jo;Lee, Sang-Hyun;Min, Kyung-Won;Lee, Sung-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.127-132
    • /
    • 2007
  • In this paper, to overcome local damages of structures, an uncertainty of structural model, installing sensors of structures, and economics of building system, decentralized semi-active magnetorheological(MR) damper using the displacement or velocity transferred to the response of floor installed damper is proposed. Relative magnitude between the control force of dampers and the story shear force is difined as design variables and the performance indices response spectra analysis through nonlinear time history analysis excited by seismic loads is performed according to this design variables. And the performance of this decentralized MR damper is compared with previous centralized LQR control algorithm using 3-stories benchmark building structure excited by El Centro (1940, N.S) in order to evaluate the application of building structures.

  • PDF

Intelligence Control Characteristics of a Digital Damper (디지털 댐퍼의 지능제어 특성)

  • Song, Joon-Ho;Lee, Yuk-Hyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.5-10
    • /
    • 2006
  • The objective of this paper is to investigate the Intelligence control characteristics of a digital damper. This paper deals with a two-degree-of-freedom suspension using the damper with ER fluid for a quarter vehicle system. The control law for semi-active suspensions modeled in this study is developed using passive and ANFIS control method. Computer simulation results show that the semi-active suspension with ER damper has good performances of ride quality.

  • PDF

DEVELOPMENT OF A REVERSE CONTINUOUS VARIABLE DAMPER FOR SEMI-ACTIVE SUSPENSION

  • Yoon, Young-Hwan;Choi, Myung-Jin;Kim, Kyung-Hoon
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.27-32
    • /
    • 2002
  • Semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspensions fur passenger cars. In this study, a continuous variable damper for a passenger car suspension is developed. It is controlled actively and exhibits high performance with light weight, low cost, and low energy consumption. To get fast response of the damper, reverse damping mechanism is adapted, and to get small pressure change rate after blow-off, a pilot controlled proportional valve is designed and analyzed. The reverse continuous variable damper is designed as a HS-SH damper which offers good body control with reduced transferred input force from tire, compared with any other type of suspension system. The damper structure is designed, so that rebound and compression damping force can be tuned independently, of which variable valve is placed externally. The rate of pressure change with respect to the flow rate after blow-offbecomes smooth when the fixed orifice size increases. Damping forces are measured with the change of the solenoid current at the different piston velocities to confirm the maximum hysteresis of 20N, linearity, and variance of damping farce. The damping farce variance is wide and continuous, and is controlled by the spoof opening, of which scheme is usually adapted in proportional valves. The reverse continuous variable damper developed in this study is expected to be utilized in the semi-active suspension systems in passenger cars after its performance and simplicity of the design is confirmed through real car test.

A Study on Vibration Control using Active Dynamics Damper with Linear Electric Motor (전자기력에 의한 능동 동흡진기의 진동제어성능에 관한 연구)

  • 고우식;박노길;노철웅;성기대;이인우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.163-168
    • /
    • 1996
  • In this paper a new dynamic damper driven by DC linear electric motor, is proposed for suppressing wide-band vibration. First, the reason for the incapability of a conventional dynamic damper to suppress wide-band vibration is explained. Then, with its defects taken into consideration, the principle of wide-band vibration control is presented. Finally, experiments ar conducted verifying the control effect of the active dynamic damper for suppressing wide-band vibration.

  • PDF

Vehicle dynamic analysis of continuously controlled semi-active suspension using hardware-in-the-loop simulation (Hardware-in-the-loop 시뮬레이션을 이용한 연속 가변식 반능동 현가 시스템의 차량 동역학적 해석)

  • 황성호;허승진;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1107-1112
    • /
    • 1996
  • A semi-active suspension system with continuously variable damper is greatly expected to be mainly used in the future as a high-performance suspension system due to its cost-effectiveness, light weight, and low energy consumption. To develop the suitable control logic for the semi-active suspension system, the hardware-in-the-loop simulation is performed with the experimental continuously variable damper combined with a quarter-car model. The hardware-in-the-loop simulation results are compared for passive, on/off controlled, and continuously controlled dampers in the aspects of ride comfort and driving safety, assuming each damper to be installed on a vehicle.

  • PDF

Vibration Control Performance Evaluation of Semi-active Outrigger Damper System (준능동 아웃리거 댐퍼시스템의 진동제어 성능평가)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.81-89
    • /
    • 2015
  • Damped outrigger systems have been proposed as a novel energy dissipation system to protect tall buildings from severe earthquakes and strong wind loads. In this study, semi-active damping devices such as magnetorheological (MR) dampers instead of passive dampers are installed vertically between the outrigger and perimeter columns to achieve large and adaptable energy dissipation. Control performance of semi-active outrigger damper system mainly depends on the control algorithm. Fuzzy logic control algorithm was used to generate command voltage sent to MR damper. Genetic algorithm was used to optimize the fuzzy logic controller. An artificial earthquake load was generated for numerical simulation. A simplified numerical model of damped outrigger system was developed. Based on numerical analyses, it has been shown that the semi-active damped outrigger system can effectively reduce both displacement and acceleration responses of the tall building in comparison with a passive outrigger damper system.

A Study of the Active Resonance Damper for a DC Distributed Power System with Parallel Pulsed Power Loads (병렬펄스부하를 갖는 직류배전시스템을 위한 능동 공진 댐퍼에 대한 연구)

  • La, Jae-Du;Lee, Byung-Hun;Chang, Han-Sol;Woo, Hyun-Min;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1289-1295
    • /
    • 2012
  • An active resonance damper for a DC Distributed Power System(DPS) with parallel loads is presented. Each pulse power load in a DC DPS comprises both a resistive power load and a step-up converter. The step-up converter behave as constant power load(CPL) when tightly regulated and usually cause a negative impedance instability problem. Furthermore, when an input filter is connected to a large constant power load, the instability of DC bus voltage. In this paper, a bidirectional DC/DC converter with a reduced storage capacitor quantitatively are proposed as a active resonance damper, to mitigate the voltage instability on the bus. The validity of the proposed method was confirmed by simulation and experimental works.

Seismic Response Control of Bridge Structure using Fuzzy-based Semi-active Magneto-rheological Dampers

  • Park, Kwan-Soon;Ok, Seung-Yong;Seo, Chung-Won
    • International Journal of Safety
    • /
    • v.10 no.1
    • /
    • pp.22-31
    • /
    • 2011
  • Seismic response control method of the bridge structures with semi-active control device, i.e., magneto-rheological (MR) damper, is studied in this paper. Design of various kinds of clipped optimal controller and fuzzy controller are suggested as a semi-active control algorithm. For determining the control force of MR damper, clipped optimal control method adopts bi-state approach, but the fuzzy control method continuously quantifies input currents through fuzzy inference mechanism to finely modulate the damper force. To investigate the performances of the suggested control techniques, numerical simulations of a multi-span continuous bridge system subjected to various earthquakes are performed, and their performances are compared with each other. From the comparison of results, it is shown that the fuzzy control system can provide well-balanced control force between girder and pier in the view point of structural safety and stability and be quite effective in reducing both girder and pier displacements over the existing control method.

  • PDF

Active Vibration Suppression Using Sweeping Damping Controller (움직이는 감쇠제어기를 이용한 능동진동제어)

  • Bae, Byung-Chan;Kwak, Moon-K.;Lee, Myung-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.293-296
    • /
    • 2005
  • This paper is concerned with the sweeping damping controller for beam. The active damping characteristics can be enhanced by moving the damper along the longitudinal axis. In this paper, the equation of motion for a beam including a sweeping damping controller is derived and its stability is proved by using Lyapunov stability theorem. It is found from the theoretical study that the sweeping damping controller can enhance the active damping characteristics, so that a single damper can suppress all the vibration modes of the beam. To demonstrate the concept of the sweeping damping control, the eddy current damper was applied to a cantilever, where the eddy current damping can move along the axis. The experimental result shows that the sweeping eddy current damper Is an effective device for vibration suppression.

  • PDF