• 제목/요약/키워드: Active Contour Segmentation

검색결과 79건 처리시간 0.024초

Active contour와 Optical flow를 이용한 카메라가 움직이는 환경에서의 이동 물체의 검출과 추적 (A Method of Segmentation and Tracking of a Moving Object in Moving Camera Circumstances using Active Contour Models and Optical Flow)

  • 김완진;장대근;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(4)
    • /
    • pp.89-92
    • /
    • 2001
  • In this paper, we propose a new approach for tracking a moving object in moving image sequences using active contour models and optical flow. In our approach object segmentation is achieved by active contours, and object tracking is done by motion estimation based on optical flow. To get more dynamic characteristics, Lagrangian dynamics combined to the active contour models. For the optical flow computation, a method, which is based on Spatiotempo-ral Energy Models, is employed to perform robust tracking under poor environments. A prototype real tracking system has been developed and applied to a contents-based video retrieval systems.

  • PDF

Classification of White Blood Cell Using Adaptive Active Contour

  • Theerapattanakul, J.;Plodpai, J.;Mooyen, S.;Pintavirooj, C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1889-1891
    • /
    • 2004
  • The differential white blood cell count plays an important role in the diagnosis of different diseases. It is a tedious task to count these classes of cell manually. An automatic counter using computer vision helps to perform this medical test rapidly and accurately. Most commercial-available automatic white blood cell analysis composed mainly 3 steps including segmentation, feature extraction and classification. In this paper we concentrate on the first step in automatic white-blood-cell analysis by proposing a segmentation scheme that utilizes a benefit of active contour. Specifically, the binary image is obtained by thresolding of the input blood smear image. The initial shape of active is then placed roughly inside the white blood cell and allowed to grow to fit the shape of individual white blood cell. The white blood cell is then separated using the extracted contour. The force that drives the active contour is the combination of gradient vector flow force and balloon force. Our purposed technique can handle very promising to separate the remaining red blood cells.

  • PDF

에너지 최소화 방법을 이용한 영상분할 (Image Segmentation with Energy Minimization Method)

  • 강진숙;김진숙;차의영
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(상)
    • /
    • pp.191-194
    • /
    • 2002
  • 영상분할이란 영상 내에 존재하는 객체를 배경에서 분리해내는 것을 말한다. Active Contour 모델은 객체를 영상에서 분리하는 gradient 기반의 영상분할 방식이다. 전통적인 의미의 Active Contour 모델에서 사용한 gradient 함수 기반의 영상분할은 잡영이 많고 객체와 배경간 뚜렷한 경계가 없는 영상에서는 그 한계를 보이고 있다. 이에 본 논문에서는 이러한 Active Contour 모델의 단점을 극복하기 위한 방법으로 영상 내의 진화곡선에 의존하는 에너지 함수인 Mumford-Shah Functional을 이용한 방법을 제안한다. 이 방법은 영상 내의 Active Contour를 진화시켜 Mumford-Shah 함수의 에너지를 최소화시키는 Level Set 함수를 찾고 Level Set 함수에 의해 얻어진 부분영상에서 히스토그램을 이용한 임계치(thresholding) 방식을 사용하는 보다 효과적인 객체추출 모델이다.

  • PDF

거리정규화 레벨셋을 이용한 칼라객체분할 (Color Object Segmentation using Distance Regularized Level Set)

  • 란 안;이귀상
    • 인터넷정보학회논문지
    • /
    • 제13권4호
    • /
    • pp.53-62
    • /
    • 2012
  • 객체분할은 영상처리와 컴퓨터비전분야의 상당히 어려운 연구대상이다. 그레이스케일 영상에 대한 영상분할은 매우 많은 방법이 발표되었으며 다양한 영상특징과 처리방법이 제시되었다. 이러한 방법들은 대개 자연상태의 칼라 영상에 적용되기 어렵다. 본 논문에서는 기하학적인 Active Contour 모델의 수정된 형태, 즉 거리정규화레벨셋(distance regularized level set evolution: DRLSE)을 이용한 방법을 제시하여 스피드 함수가 이러한 칼라요소를 반영하도록 하였으며 실험결과 정확성과 시간효율성에 있어서 우수한 결과를 보여주었다.

Adaptive Active Contour Model: a Localized Mutual Information Approach for Medical Image Segmentation

  • Dai, Shuanglu;Zhan, Shu;Song, Ning
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1840-1855
    • /
    • 2015
  • Troubles are often met when traditional active contours extract boundaries of medical images with inhomogeneous bias and various noises. Focusing on such a circumstance, a localized mutual information active contour model is discussed in the paper. By defining neighborhood of each point on the level set, mutual information is introduced to describe the relationship between the zero level set and image field. A driving energy term is then generated by integrating all the information. In addition, an expanding energy and internal energy are designed to regularize the driving energy. Contrary to piecewise constant model, new model has a better command of driving the contours without initialization.

Snake를 이용한 디지털 내시경 영상의 분할 (Segmentation using Snakes on Digital Endoscopic Image)

  • 윤성원;김정훈;최종주;윤용수;이준영;이명호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2715-2717
    • /
    • 2002
  • Image segmentation is an essential technique of image analysis. In spite of the issues in contour initialization and boundary concavities, active contour models(snakes) are popular and successful methods for the segmentation. In this paper, we present a new active contour model, GGF snake, for segmentation of endoscopic image. The GGF snake is less sensitive to contour initialization and ensures high accuracy, large capture range, and fast CPU time for computing external force. It was observed that the GGF snake produced more reasonable results in various image types, such as simple synthetic images, commercial digital camera images, and endoscopic images than previous snakes did.

  • PDF

모양공간 모델을 이용한 영상분할 알고리즘 (An Image Segmentation Algorithm using the Shape Space Model)

  • 김대희;안충현;호요성
    • 대한전자공학회논문지SP
    • /
    • 제41권2호
    • /
    • pp.41-50
    • /
    • 2004
  • MPEG-4 표준에서는 객체 단위의 부호화를 수행하기 위해 자연영상으로부터 비디오 객체를 분리하는 영상분할(segmentation) 기술이 필요하다. 영상분할 방법은 크게 자동 영상분할(automatic segmentation)과 반자동 영상분할(semi-automatic segmentation)의 두 부류로 나눌 수 있다. 지금까지 개발된 대부분의 자동 영상분할 방법은 비디오 객체의 명확한 수학적인 모델을 제시하기 곤란하며 한 화면에서 개별 객체를 추출하기 어렵기 때문에 그 성능에 한계가 있다. 본 논문에서는 이러한 문제점을 극복하기 위해 active contour 알고리즘을 이용한 반자동 영상분할 알고리즘을 제안한다. 초기 곡선으로부터 변화 가능한 모든 곡선의 집합을 모양공간으로 정의하고 그 공간을 선형공간이라고 가정하면, 모양공간(shape space)은 모양 행렬에 의해 행(column) 공간과 남은 빈(left null) 공간으로 나뉘어진다. 본 논문에서 제안하는 알고리즘은 행공간의 모양공간 벡터를 이용하여 초기 곡선으로부터 영상의 특징점까지의 변화를 기술하고 동적 그래프 검색 알고리즘을 이용하여 객체의 세밀한 부분을 묘사한다. 모양 행렬과 객체의 윤곽을 추정하기 위한 SUSAN 연산자의 사용으로 제안한 알고리즘은 저수준 영상처리로부터 생성되는 불필요한 특징점을 무시할 수 있다. 또한, 모양 행렬의 사용으로 생긴 제약은 동적 그래프 검색 알고리즘으로 보상한다.

Automatic Bone Segmentation from CT Images Using Chan-Vese Multiphase Active Contour

  • Truc, P.T.H.;Kim, T.S.;Kim, Y.H.;Ahn, Y.B.;Lee, Y.K.;Lee, S.Y.
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권6호
    • /
    • pp.713-720
    • /
    • 2007
  • In image-guided surgery, automatic bone segmentation of Computed Tomography (CT) images is an important but challenging step. Previous attempts include intensity-, edge-, region-, and deformable curve-based approaches [1], but none claims fully satisfactory performance. Although active contour (AC) techniques possess many excellent characteristics, their applications in CT image segmentation have not worthily exploited yet. In this study, we have evaluated the automaticity and performance of the model of Chan-Vese Multiphase AC Without Edges towards knee bone segmentation from CT images. This model is suitable because it is initialization-insensitive and topology-adaptive. Its segmentation results have been qualitatively compared with those from four other widely used AC models: namely Gradient Vector Flow (GVF) AC, Geometric AC, Geodesic AC, and GVF Fast Geometric AC. To quantitatively evaluate its performance, the results from a commercial software and a medical expert have been used. The evaluation results show that the Chan-Vese model provides superior performance with least user interaction, proving its suitability for automatic bone segmentation from CT images.

B-Spline곡선을 이용한 반자동 영상분할 알고리즘 (A Semi-Automatic Segmentation Algorithm using B-Spline Curves)

  • 김대희;호요성
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2001년도 정기총회 및 학술대회
    • /
    • pp.155-160
    • /
    • 2001
  • 대부분의 자동 영상분할 방법은 한 화면에서 개별 객체를 추출하기가 어렵고, 비디오 객체의 명확한 모델이 없어 자동분할 방법에는 한계가 존재한다. 본 논문에서는 이러한 문제점을 극복하기 위해 Active contour를 이용한 반자동 영상분할 방법을 제안한다. 일반적인 Active Contour 알고리즘은 유한개의 제어점을 설정하고 그 차이로 곡선의 특성을 묘사하므로 곡선 위의 제어점 사이의 모양 정보를 표현하는데 불충분하다 또한, 대부분의 Active Contour 알고리즘은 단순한 배경을 갖는 객체에는 잘 적용되도록 설계되었으나, 복잡한 배경을 갖는 객체에는 부적절한 단점을 가지고 있다. 따라서 본 논문은 B-Spline을 이용하여 곡선을 표현하고, 복잡한 영상에서도 좋은 성능을 갖도록 곡의치 외부 에너지는 SUSAN 연산자를 이용하여 추출하였다.

  • PDF

CT Angiography 영상에서 대동맥 추출을 위한 혈관 분할 알고리즘 성능 평가 (Performance evaluation of vessel extraction algorithm applied to Aortic root segmentation in CT Angiography)

  • 김태형;황영상;신기영
    • 한국정보전자통신기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.196-204
    • /
    • 2016
  • 세계보건기구협회에의 통계에 따르면 심장 혈관 질환의 발병률이 가장 높은 것으로 알려져 있다. CTA영상을 사용하여 관상동맥 및 대동맥 질환을 치료 및 검사할 수 있다. 혈관을 3차원으로 복원하는 과정이 의사의 숙련도에 따라 결과가 상이하며 복원 시간이 길다는 단점이 있으며 이를 극복하고자 자동으로 정확한 혈관을 추출하는 연구들이 진행되어 왔다. 본 논문에서는 자동 및 반자동 분할 기법인 Region Competition, Geodesic Active Contour(GAC), Multi-atlas based segmentation, Active Shape Model(ASM) 알고리즘을 CTA영상에 적용하여 대동맥 기부를 추출하였으며 하우스도르프 거리, 볼륨, 영상처리속도, 사용자 관여 여부, 그리고 관상동맥 심문 검출률을 비교 및 분석하였다. 추출된 3차원 대동맥 모델 중 가장 높은 정확도를 나타낸 알고리즘은 GAC인 반면 사용자 관여가 가장 높았기 때문에 실제 시술에 적용하기 위해서는 자동 분할 알고리즘 개선이 필요하다