본 논문에서는 단일 프레임 영상에 존재하는 객체를 Active Contour 기반의 영역 분할 과정을 거쳐 분할하였다. Active Contour는 영상에서 객체의 윤곽 형태를 검출해내는 것으로 다중 객체 분할을 위해 각 객체의 윤곽 형태를 검출해 낼 수 있도록 다중 탐색 시작점을 갖도록 하였다. 생성된 객체 별 윤곽 정보를 기반으로 이진화하여 초기 객체 영역을 생성하였다. 초기 객체 영역 내부의 홀 영역과 픽셀 값의 변화로 인한 내부 분할을 hole filling을 수행하여 보정함으로써 최종 객체 영역을 생성하였다. 제안한 기법은 기존 영역 기반 분할의 문제점인 잡음이나 경계선 부근에서 객체 분할이 정확히 이루어지지 않는 부분을 보완하였다. 제안 방법을 비교하기 위해 실제 영상에 기존에 제안된 객체 분할 방법과 제안한 방법을 각각 적용하여 비교하였다.
The corpus callosum is the largest connective structure in the brain, and its shape and size are correlated to sex, age, brain growth and degeneration, handedness, musical ability, and neurological diseases. Manually segmenting the corpus callosum from brain magnetic resonance (MR) image is time consuming, error prone, and operator dependent. In this paper, two semi-automatic segmentation methods are present: the active contour model-based approach and the active shape model-based approach. We tested these methods on an MR image of the human brain and found that the active contour approach had better segmentation accuracy but was slower than the active shape approach.
MPEG-4 표준에서는 객체 단위의 부호화를 수행하기 위해 우선 자연영상으로부터 비디오 객체론 분리하는 영상분할(Segmentation) 기술이 필요하다. 영상분할 방법은 크게 자동 영상분할(Automatic Segment값ion)과 반자동 영상분할(Semi-automatic Segmentation)의 두 부류로 나눌 수 있다. 대부분의 자동 영상분할 방법은 비디오 객체의 명확한 모델을 수학적으로 제시하기 어려우므로 한 화면에서 개별 객체를 추출하기 어렵기 때문에 그 성능에 한계가 있다. 본 논문에서는 이러한 문제점을 극복하기 위해 기하학적인 Active Contour를 이용한 반자동 영상분할 알고리즘을 제안한다. 매개변수 방식의 Active Contour와 달리, 기하학적인 Active Contour는 곡선의 변화론 Level Set 방법을 이용하여 기술하기 때문에 초기 곡선의 모양을 객체의 모양과 무관하게 그릴 수 있다. 평탄화된 영상으로부터 경계함수를 생성하기 위해 이진화된 3차원 확산 모델을 사용하여 LUV 벡터 공간에서 비등방형 확산을 수행한다. 본 논문에서는 흐름 벡터장(Advection Vector Field)에서 곡선을 수축하고, 움직임 정보를 이용하여 곡선 확장하는 방법을 이용하여 동영상에서 객체를 분리하는 방법을 제안한다.
바이오 영상에서 세포 영역의 자동 분할 기술은 생물학자들이 복잡한 세포의 기능을 이해하는데 도움을 주고, 수작업을 통해 세포를 분석하던 일들을 자동적으로 처리해주는 매우 중요한 기술이다. 기존의 멀티채널 영상으로부터 세포핵 및 세포를 분할하는 방법은 DNA 채널을 이용하여 세포핵을 검출하고, 이를 초기 윤곽으로 하여 Actin 채널에서 밝기 기반의 Active Contour 모델을 통해 세포를 분할하는 2 단계의 과정을 거친다. 그러나 세포 분할 과정에서 채널 간 상관성으로 인해 발생하는 세포 내 불균일한 밝기 문제를 고려하지 않은 채, 밝기 기반의 Active Contour 모델을 적용하여 분할의 성능이 저하되는 문제점이 발생한다. 따라서 본 논문에서는 DNA 와 Actin 채널 간 상관성을 고려하여, DNA 채널 정보를 통해 Actin 채널 내부의 밝기를 균일하게 보정함으로써 밝기 기반의 Active Contour 모델이 세포 분할에 잘 적용 될 수 있는 전처리 알고리즘을 제안한다. 실험을 통해 제안 전처리 과정을 거친 세포 분할 방법의 성능이 기존 방법에 비해 객관적, 주관적으로 크게 향상됨을 증명한다.
Siddiqi, Muhammad Hameed;Khan, Adil Mehmood;Lee, Seok-Won
KSII Transactions on Internet and Information Systems (TIIS)
/
제7권11호
/
pp.2839-2852
/
2013
Context-awareness is an essential part of ubiquitous computing, and over the past decade video based activity recognition (VAR) has emerged as an important component to identify user's context for automatic service delivery in context-aware applications. The accuracy of VAR significantly depends on the performance of the employed human body segmentation algorithm. Previous human body segmentation algorithms often engage modeling of the human body that normally requires bulky amount of training data and cannot competently handle changes over time. Recently, active contours have emerged as a successful segmentation technique in still images. In this paper, an active contour model with the integration of Chan Vese (CV) energy and Bhattacharya distance functions are adapted for automatic human body segmentation using depth cameras for VAR. The proposed technique not only outperforms existing segmentation methods in normal scenarios but it is also more robust to noise. Moreover, it is unsupervised, i.e., no prior human body model is needed. The performance of the proposed segmentation technique is compared against conventional CV Active Contour (AC) model using a depth-camera and obtained much better performance over it.
In this paper, we have compared three level set-based active contour (LSAC) methods on inhomogeneous MR image segmentation which is known as an important role of brain diseases to diagnosis and treatment in early. MR image is often occurred a problem with similar intensities and weak boundaries which have been causing many segmentation methods. However, LSAC method could be able to segment the targets such as the level set based on the local image fitting energy, the local binary fitting energy, and local Gaussian distribution fitting energy. Our implemented and tested the subcortical image segmentations were the corpus callosum and hippocampus and finally demonstrated their effectiveness. Consequently, the level set based on local Gaussian distribution fitting energy has obtained the best model to accurate and robust for the subcortical image segmentation.
Journal of information and communication convergence engineering
/
제9권6호
/
pp.666-670
/
2011
In this paper, we propose a stable active contour based tracking method which utilizes the bimodal segmentation technique to obtain a background color diminished image frame. The proposed method overcomes the drawback of the Mansouri model which is liable to fall into a local minimum state when colors appear in the background that are similar to the target colors. The Mansouri model has been a foundation for active contour based tracking methods, since it is derived from a probability based interpretation. By stabilizing the model with the proposed speed function, the proposed model opens the way to extend probability based active contour tracking for practical applications.
본 논문에서는 active contour model과 유전 알고리즘을 이용하여 의료영상에서 해부학적 객체의 경계선을 자동으로 추출하는 방법을 제안한다. active contour model의 성능은 active contour model의 에너지를 최적화 하는 방법에 크게 영향을 받는다. 본 논문에서는 유전 알고리즘을 이용하여 active contour model의 에너지를 최적화 하는 방법을 제안한다. 본 방법을 대퇴골두 의료영상에 적용하여 실험하였으며, active contour model의 초기화에 관계없이 성공적인 결과를 얻었음을 보였다.
Journal of International Society for Simulation Surgery
/
제2권1호
/
pp.17-25
/
2015
Purpose In this paper, we propose a robust 3D vessel tracking algorithm by utilizing an active contour model and unscented Kalman filter which are the two representative algorithms on segmentation and tracking. Materials and Methods The proposed algorithm firstly accepts user input to produce an initial estimate of vessel boundary segmentation. On each Computed Tomography Angiography (CTA) slice, the active contour is applied to segment the vessel boundary. After that, the estimation process of the unscented Kalman filter is applied to track the vessel boundary of the current slice to estimate the inter-slice vessel position translation and shape deformation. Finally both active contour and unscented Kalman filter are inter-operated for vessel segmentation of the next slice. Results The arbitrarily shaped blood vessel boundary on each slice is segmented by using the active contour model, and the Kalman filter is employed to track the translation and shape deformation between CTA slices. The proposed algorithm is applied to the 3D visualization of chest CTA images using graphics hardware. Conclusion Through this algorithm, more opportunities, giving quick and brief diagnosis, could be provided for the radiologist before detailed diagnosis using 2D CTA slices, Also, for the surgeon, the algorithm could be used for surgical planning, simulation, navigation and rehearsal, and is expected to be applied to highly valuable applications for more accurate 3D vessel tracking and rendering.
$\textbullet$ Image segmentation is an essential technique of image analysis. In spite of the traditional issues in contour initialization and boundary concavities, active contour models(snakes) are popular and known as successful methods for segmentation. $\textbullet$ We could find in experiment that snake using Gaussian External Force is fast in time but low in accuracy and snake using Gradient Vector Flow by Chenyang Xu and Jerry L. Prince is high in accuracy but slow in time. $\textbullet$ In this paper, we presented a new active contour model, GGF snake, for segmentation of endoscopic image. Proposed GGF snake made up for the defects of the traditional snakes in contour initialization and boundary...
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.