• 제목/요약/키워드: Active Camera

검색결과 296건 처리시간 0.047초

동적 스테레오 카메라 모델링 (An active stereo camera modeling)

  • 도경민;이쾌희
    • 제어로봇시스템학회논문지
    • /
    • 제3권3호
    • /
    • pp.297-304
    • /
    • 1997
  • In stereo vision, camera modeling is very important because the accuracy of the three dimensional locations depends considerably on it. In the existing stereo camera models, two camera planes are located in the same plane or on the optical axis. These camera models cannot be used in the active vision system where it is necessary to obtain two stereo images simultaneously. In this paper, we propose four kinds of stereo camera models for active stereo vision system where focal lengths of the two cameras are different and each camera is able to rotate independently. A single closed form solution is obtained for all models. The influence of the stereo camera model to the field of view, occlusion, and search area used for matching is shown in this paper. And errors due to inaccurate focal length are analyzed and simulation results are shown. It is expected that the three dimensional locations of objects are determined in real time by applying proposed stereo camera models to the active stereo vision system, such as a mobile robot.

  • PDF

SURF와 Label Cluster를 이용한 이동형 카메라에서 동적물체 추출 (Moving Object Detection Using SURF and Label Cluster Update in Active Camera)

  • 정용한;박은수;이형호;왕덕창;허욱열;김학일
    • 제어로봇시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.35-41
    • /
    • 2012
  • This paper proposes a moving object detection algorithm for active camera system that can be applied to mobile robot and intelligent surveillance system. Most of moving object detection algorithms based on a stationary camera system. These algorithms used fixed surveillance system that does not consider the motion of the background or robot tracking system that track pre-learned object. Unlike the stationary camera system, the active camera system has a problem that is difficult to extract the moving object due to the error occurred by the movement of camera. In order to overcome this problem, the motion of the camera was compensated by using SURF and Pseudo Perspective model, and then the moving object is extracted efficiently using stochastic Label Cluster transport model. This method is possible to detect moving object because that minimizes effect of the background movement. Our approach proves robust and effective in terms of moving object detection in active camera system.

원형 물체를 이용한 로봇/카메라 자세의 능동보정 (Active Calibration of the Robot/camera Pose using Cylindrical Objects)

  • 한만용;김병화;김국헌;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.314-323
    • /
    • 1999
  • This paper introduces a methodology of active calibration of a camera pose (orientation and position) using the images of cylindrical objects that are going to be manipulated. This active calibration method is different from the passive calibration where a specific pattern needs to be located at a certain position. In the active calibration, a camera attached on the robot captures images of objects that are going to be manipulated. That is, the prespecified position and orientation data of the cylindrical object are transformed into the camera pose through the two consecutive image frames. An ellipse can be extracted from each image frame, which is defined as a circular-feature matrix. Therefore, two circular-feature matrices and motion parameters between the two ellipses are enough for the active calibration process. This active calibration scheme is very effective for the precise control of a mobile/task robot that needs to be calibrated dynamically. To verify the effectiveness of active calibration, fundamental experiments are peformed.

  • PDF

가상 링크 모델의 역기구학과 조작성을 이용한 능동 카메라 시스템의 최적 위치 결정에 관한 연구 (Determination of Optimal Position of an Active Camera System Using Inverse Kinematics of Virtual Link Model and Manipulability Measure)

  • 추길환;조재수;정명진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.239-242
    • /
    • 2003
  • In this paper, we propose how to determine the optimal camera position using inverse kinematics of virtual link model and manipulability measure. We model the variable distance and viewing direction between a target object and a camera position as a virtual link. And, by using inverse kinematics of virtual link model, we find out regions that satisfy the direction and distance constraints for the observation of target object. The solution of inverse kinematics of virtual link model simultaneously satisfies camera accessibility as well as a direction and distance constraints. And we use a manipulability measure of active camera system in order to determine an optimal camera position among the multiple solutions of inverse kinematics. By using the inverse kinematics of virtual link model and manipulability measure, the optimal camera position in order to observe a target object can be determined easily and rapidly.

  • PDF

Virtual Environment Building and Navigation of Mobile Robot using Command Fusion and Fuzzy Inference

  • Jin, Taeseok
    • 한국산업융합학회 논문집
    • /
    • 제22권4호
    • /
    • pp.427-433
    • /
    • 2019
  • This paper propose a fuzzy inference model for map building and navigation for a mobile robot with an active camera, which is intelligently navigating to the goal location in unknown environments using sensor fusion, based on situational command using an active camera sensor. Active cameras provide a mobile robot with the capability to estimate and track feature images over a hallway field of view. In this paper, instead of using "physical sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data. Command fusion method is used to govern the robot navigation. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a command fusion technique is introduced, where the sensory data of active camera sensor for navigation experiments are fused into the identification process. Navigation performance improves on that achieved using fuzzy inference alone and shows significant advantages over command fusion techniques. Experimental evidences are provided, demonstrating that the proposed method can be reliably used over a wide range of relative positions between the active camera and the feature images.

능동적인 비전 시스템에서 카메라의 시선 조정: 컴퓨터 비전과 제어의 융합 테마 (Steering Gaze of a Camera in an Active Vision System: Fusion Theme of Computer Vision and Control)

  • 한영모
    • 전자공학회논문지SC
    • /
    • 제41권4호
    • /
    • pp.39-43
    • /
    • 2004
  • 능동적인 비전 시스템의 전형적인 한 테마는 카메라의 시선 고정 문제이다. 여기서 카메라의 시선 고정이란 동적인 물체 상의 지정된 한 점이 항시 이미지의 중앙부에 놓이도록 카메라의 자세를 조정하는 것으로서, 이를 위해서는 카메라에 비친 영상정보를 분석하는 기능과 카메라의 자세를 제어하는 두 가지 기능이 결합되어야 한다. 본 논문에서는 영상분석과 자세제어가 한 개의 프레임 하에서 설계되는 카메라의 시선 고정을 위한 알고리즘을 제안한다. 이 때 제작시의 어려움을 피하고 실시간 응용을 위해서 본 알고리즘은 카메라의 calibration이나 3차원 거리 정보의 복원을 필요로 하지 않도록, 그리고 닫힌 형태(closed-form)가 되도록 설계된다.

고정카메라 및 능동카메라 환경에서 이동물체 추적 알고리즘에 관한 연구 (A Study on the Moving Object Tracking Algorithm of Static Camera and Active Camera in Environment)

  • 남기환;배철수
    • 한국정보통신학회논문지
    • /
    • 제7권2호
    • /
    • pp.344-352
    • /
    • 2003
  • 본 논문에서는 CCD 카메라를 통해 전송되는 영상 시퀀스를 대상으로 움직이는 물체의 형태가 보행중인 사람, 혹은 자동차인지를 식별하고 이의 이동 방향을 판단하여, 이를 추적하는 무인 감시 시스템을 위한 효율적인 알고리즘을 제안한다. 고정 카메라 환경에서 유동적인 배경으로부터 안정된 움직임 추출을 위하여 배경과 이동 물체를 통계적 매개 변수로 모델링하고 배경만이 존재하는 초기 연속 영상 중 일부에 대하여 통계적으로 학습한다. 또한, 능동카메라 환경에서는 카메라 움직임에 의하여 배경에서도 움직임 에너지가 발생하므로 예측된 이동 궤적정보를 이용함으로써 연산량의 감소와 정확성을 기하였다. 본 논문에서 제안한 알고리즘을 고정카메라 및 능동카메라 환경에서 취득한 연속 영상에 적용한 결과 안정된 추적 결과를 얻었다. 제안한 알고리즘은 제한된 지역내의 무인 감시 시스템 도로 환경에서 교통흐름의 모니터링 시스템 및 나아가서 지능형 도로망을 위한 자가 주행 시스템에 적용이 기대된다.

무인항공기 임무장비용 압전 마운트 시스템의 진동 제어 성능 평가 (Evaluation of Vibration Control Performance of Camera Mount System for UAV)

  • 오종석;손정우;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.407-412
    • /
    • 2009
  • In the present work, vibration control performance of active camera mount system for unmanned aero vehicle (UAV) is evaluated. An active mount featuring inertia type of piezostack actuator is designed and manufactured. Then, vibration control performances are experimentally evaluated. A camera mount system with four active mounts is constructed and mechanical model is established. The governing equation for the camera mount system is obtained and control model is constructed in state space model. Sliding mode controller which has inherent robustness to external disturbance is designed and implemented to the system. Vibration control performances are evaluated at each mount and center of gravity point. Effective vibration performances are obtained and presented in time and frequency domains.

  • PDF

이동물체 추적을 위한 능동시각 시스템 구축 (Active eye system for tracking a moving object)

  • 백문홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.257-259
    • /
    • 1996
  • This paper presents the active eye system for tracking a moving object in 3D space. A prototype system able to track a moving object is designed and implemented. The mechanical system ables the control of platform that consists of binocular camera and also the control of the vergence angle of each camera by step motor. Each camera has two degrees of freedom. The image features of the object are extracted from complicated environment by using zero disparity filtering(ZDF). From the cnetroid of the image features the gaze point on object is calculated and the vergence angle of each camera is controlled by step motor. The Proposed method is implemented on the prototype with robust and fast calculation time.

  • PDF

무인항공기 임무장비용 압전 마운트 시스템의 진동 제어 성능 평가 (Evaluation of Vibration Control Performance of Camera Mount System for UAV)

  • 오종석;손정우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1315-1321
    • /
    • 2009
  • In the present work, vibration control performance of active camera mount system for unmanned aero vehicle(UAV) is evaluated. An active mount featuring inertia type of piezostack actuator is designed and manufactured. Then, vibration control performances are experimentally evaluated. A camera mount system with four active mounts is constructed and mechanical model is established. The governing equation for the camera mount system is obtained and control model is constructed in state space model. Sliding mode controller which has inherent robustness to external disturbance is designed and implemented to the system. Vibration control performances are evaluated at each mount and center of gravity point. Effective vibration performances are obtained and presented in time and frequency domains.