• Title/Summary/Keyword: Active Array Antenna

Search Result 151, Processing Time 0.029 seconds

Expansion of Variable Range of Oscillation Frequency of Active Phased Array Antenna by a Varactor Diode (바랙터다이오드에 의한 능동 위상차 배열 안테나의 발진 주파수 가변 범위의 확장)

  • 최영규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.11
    • /
    • pp.521-528
    • /
    • 2003
  • A varactor diode was utilized in order to expand variable range of the natural oscillation frequency of an active phased-array antenna. We have conformed experimentally that the variable range of the natural oscillation frequency was expanded about three times in the oscillator controlled by the varactor diode. When frequency difference was given to the oscillators in the two elements antenna system, phase difference was appeared between the oscillators. The 2-, 3-, 5-elements patch antenna array was composed for the beam scanning experiments. All the above patch antennas showed good phased array characteristics. The experimental results are as follows that the scanning angle of the 2-elements array antenna is 28.6$^{\circ}$, the 3-elements array antenna is 29.4$^{\circ}$, and the 5-elements array antenna is 26.2$^{\circ}$.

Experimental Studies on the Performance of the Active Phased-Array. Antenna Coupled by Transmission Line (전송선로로 결합된 능동 위상차배열 안테나의 동작특성에 관한 실험적 연구)

  • 최영규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.175-181
    • /
    • 2004
  • In order to increase the coupling efficiency of the Power and Phase of the active Phase way antenna, we have fabricated the active phased-array antenna which is coupled by the transmission line, and investigated the relationship between the length of the coupling transmission line and coupling power and phase. The following three types of driving method -(1) giving the frequency difference between the two active antenna, (2) applying the input signal to the one side of the two antennas, and changing the eigen frequency of the other side antenna, (3) appling the different phase inputs to the active antennas was investigated. The experimental results showed that the interval of the antenna elements has not affected the power and the phase of the antenna.

The Characteristics of Wide-Band/Wide-Scan E-plane Notch Phased Array Antenna

  • Kim, Jun-Yeon;So, Joon-Ho;Lee, Moon-Que;Cheon, Chang-Yul
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.5
    • /
    • pp.194-198
    • /
    • 2003
  • A wide-band E-plane notch phased array antenna having bandwidths of 3:1 and a scan volume of $\pm$ 45 is designed considering the active element pattern (AEP) with analysis of the full structure of E-plane notch phased array antenna. Using the numerical E-plane waveguide simulator as an infinite linear array in the broadside angle, the active reflection coefficient (ARC) of the unit element is optimized in the design frequency range. To evaluate the convergence of the AEP, the simulation of full array as changing the number array is investigated, and the minimum numbers of array that have characteristics similar to the AEP of an infinite array are determined.

A phase calibration method of active phased array antennas for satellite communication

  • Noh, Haeng-Sook;Jeon, Soon-Ik;Chae, Jong-seock
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.519-522
    • /
    • 2002
  • An active phased array antenna consists of many channels. Each channel has a different initial phase shift and gain because of the inequality in the active circuits themselves, interface between radiators and active circuits, and beam-forming circuits and other antenna system configurations. This raises an inherent problem in active phased array antennas. To compensate for this problem the initial phase and gain of each channel should be calibrated. This paper presents an efficient calibration method for an initial phase variation of each channel in active phased array antennas. We tested our method in an active phased array antenna, and obtained good results in the radiation pattern and beam direction of antenna.

  • PDF

On the implementation of Taper slot array antenna structure (Taper 슬롯구조배열 안테나 구현)

  • Lee, Cheon-Hee;Kim, Ho-Jun;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.1
    • /
    • pp.127-134
    • /
    • 2014
  • X-Band taper slot-typed active phased array antenna is studied and designed. Through the simulated and measured performances, it is confirmed that both of active reflection coefficient and active radiation pattern of the designed phased array antenna are agreed well with those of the prototype manufactured one. From this study, the proposed antenna structure is matched to the design target of characteristics of antenna's broadband beam.

Ku band Linear Active phased Array Antenna Design and Fabrication (Ku 대역 선형 능동 위상 배열 안테나 설계 및 제작)

  • Ryu, Sung-Wook;Eom, Soon-Young;Kim, Nam
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.215-216
    • /
    • 2006
  • In this paper, the antenna the with linear active phased array of $1{\times}16$ operated in DBS band was designed. The antenna was composed of sixteen radiating elements, sixteen active channels and five Wilkinson power combiners with 4-channel inputs, a digital control board and a stabilizing DC bias board. The radiating element of the array has the structure of a microstrip stack patch with a left-hand circular polarization. And, each active channel consists of a low noise ampilifier, a 3-bit digital phase shifter and a variable analog attenuator. The breadboard of linear active phased array antenna was also fabricated to test the electrical performances. The radiation patterns of the antenna were measured after correcting initial phases of each active channel in aechoic chamber. And also, the beam scanning chracteristcs of $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ were measured.

  • PDF

Design of Array Antenna with Active Antenna Element (LNA가 장착된 안테나 소자를 이용한 배열 안테나 설계)

  • 이용기;김성남;이상원;김영식;천창율
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.279-285
    • /
    • 2004
  • In this paper, low noise amplifier(LNA), aperture coupled patch antenna and $4{\times}4$ array antenna are designed in the frequency range from 11.7㎓ to 12㎓. Array antennas with and without LNA at the antenna element are fabricated and the performances are measured including noise figure(NF). The noise figure calculation for overall system was conducted and compared with the measured data to verify our measurement method. The measured overall noise figure of the array antenna with LNA at the antenna element is lower than that of array without LNA as expected.

Design of L-Band Cylindrical Active Phase Array Antenna Using Bent Dipoles (접힌 다이폴 구조를 적용한 L-Band 원통형 능동 위상배열 안테나 설계)

  • Lee, Man-Gyu;Kwon, Ickjin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.43-55
    • /
    • 2013
  • In this paper, we propose a cylindrical active phased array antenna of Beam Steering Characteristics in the horizontal plane(H-plane) and vertical plane(E-Plane) on the cylinder form array structure. We design the bent dipole antenna of the cylindrical array structure adapted excellent mutual-coupling characteristics, designed and manufactured the cylindrical array antennas and power combiner/divider unit for power dividing and combining on the antenna. The radiating elements array spacing of Cylindrical array antenna were determined to avoid grating lobes at half power beam steering. Beam steering of the antenna was implemented with 6-bit phase shifter in the transceiver and have been designed based on the characteristics the antenna beam steering at -24 degrees to 24 degrees horizontal, vertical 0 degrees to 36 degrees beam steering. A cylindrical active phased array antenna that produced for verification the performance of the antenna are measured radiation characteristics in accordance with beam steering at L-Band.

A Study on the Stabilized System Operation Considering the Reflection Characteristic of an Active-Phased Array Antenna (능동 위상 배열 안테나의 반사 특성을 고려한 안정적 시스템 운용에 관한 연구)

  • Kim, Young-Wan;Chae, Hee-Duck;Lee, Dong-Kook;Jeong, Myung-Deok;Park, Jong-Kuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.29-37
    • /
    • 2012
  • In this paper, a stabilizd system operation through a composition of a protective circuit and an improvement of active reflection coefficient(ARC) is studied. Unlike the passive-phased array antenna, the APPA is a combined form of radiating element and transmitter-reciever module. Therefore, a definition of new ARC that differentiates itself from typical passive-phased array antenna must apply. The ARC is a reflection coefficient considering a superposition of a coupling from nearby radiating elements and self reflection. It is an important parameter that predicts and analyzes charateristics of a APPR system. A high level ARC is a direct source inducing a performance degradation of a system. In this paper, as a method for a stabilized operation of APAR, one method for improving a performance and another for degradation prevention are analyzed. An effectiveness of two methods was validated using experiment results of real-fabricated active-phased array antenna.

A New Type of the Active Array Antenna for IMT-2000 Base Stations by Using Dual-Polarization Diversity (새로운 형태의 IMT-2000 기지국용 이중편파 다이버시티 능동형 배열안테나)

  • 이학용;강기조;이병제;이종철;김종헌;김남영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.4
    • /
    • pp.359-365
    • /
    • 2002
  • In this work, a new type of the active array antenna for IMT-2000 base stations by using dual-polarization diversity is proposed and developed. As an element of array antenna, a single micorstrip patch antenna of ${\pm}$ 45$^{\circ}$slanted is designed by obtaining the bandwidth of 1,885 ㎒ to 22,000 ㎒. The polarization isolation between two linearly polarized waves is less than 16 ㏈. The gain of element antenna is more than 7 ㏈i. finally, 2${\times}$8 dual-polarization active array antenna is developed with ElRP of 1,200 W and polarization isolation of 20 ㏈ by placing a low power amplifier at each antenna element.