• 제목/요약/키워드: Activation parameters

검색결과 721건 처리시간 0.024초

Study of Dynamics of Allyl Chloride-2-Butanone Binary System Using Time Domain Reflectometry

  • Sudake, Y.S.;Kamble, S.P.;Patil, S.S.;Khirade, P.W.;Mehrotra, S.C.
    • 대한화학회지
    • /
    • 제56권1호
    • /
    • pp.20-27
    • /
    • 2012
  • Complex permittivity spectra of Allyl Chloride (AC), 2-Butanone (2-BU) and their binary mixtures over the entire range of concentration were obtained using the Time Domain Reflectometry (TDR) technique in microwave frequency range at various temperatures. Static dielectric constant and relaxation time are obtained from complex permittivity spectra. Density ($\rho$) and refractive index ($n_D$) are also measured. These parameters are used to determine excess dielectric constant, excess inverse relaxation time, excess molar volume, excess molar refraction, polarity, Bruggeman factor and thermodynamic parameters viz. enthalpy of activation and entropy of activation. The values of static dielectric constant and relaxation time increases while density and refractive index decreases with the percentage of 2-Butanone in Allyl Chloride increases. Excess parameters were fitted to a Redlich-Kister equation.

Validation of Adsorption Efficiency of Activated Carbons through Surface Morphological Characterization Using Scanning Electron Microscopy Technique

  • Malik, Ruchi;Mukherjee, Manisha;Swami, Aditya;Ramteke, Dilip S.;Sarin, Rajkamal
    • Carbon letters
    • /
    • 제5권2호
    • /
    • pp.75-80
    • /
    • 2004
  • The studies on activated carbon prepared from walnut shell and groundnut shell were undertaken to ascertain the effect of initial state of precursor and activation process on the development of porosity in the resulting activated carbon. Walnut shell based carbon shows the presence of cellular pores while Groundnut shell based carbon shows fibrillar pore structure. The adsorption parameters, characterization of product and scanning electron microscopic studies carried out showed the presence of mainly Micro, Meso and Macro porosity in carbon prepared from Walnut shell while mainly micro porosity was observed in Groundnut shell based activated carbon. An interrelationship between the adsorption efficiency and porosity in terms of quality control parameters, for before and after activation, was validated through the scanning electron microscopic data.

  • PDF

Preparation and Properties of Pelletized Activated Carbons Using Coconut Char and Coal-Tar Pitch

  • Yang, Seung-Chun;Lee, Young-Seak;Kim, Jun-Ho;Lim, Chul-Kyu;Park, Young-Tae
    • Carbon letters
    • /
    • 제2권3_4호
    • /
    • pp.176-181
    • /
    • 2001
  • A series of activated carbons were prepared from coconut shells and coal-tar pitch binder by physical activation with steam in this study. The effect of variable processes such as activation temperature, activation time and ratio of mixing was investigated for optimizing those preparation parameters. The activation processes were carried out continuously. The nitrogen adsorption isotherms at 77 K on pellet-shaped activated carbons show the same trend of Type I by IUPAC classification. The average pore sizes were about 19-21${\AA}$. The specific surface areas ($S_{BET}$) of pellet typed ACs increased with increasing the activation temperature and time. Specific surface area of AC treated for 90 min at temperature $900^{\circ}C$ was 1082 $m^2/g$. The methylene blue numbers continuously increased with increasing the activation temperature and time. On the other hand, iodine numbers highly increased till activation time of 60 min, but the rate of increase of iodine numbers decreased after that time. This indicates that new micropores were created and the existing micropores turned into mesopores and macropores because of increased reactivity of carbon surface and $H_2O$.

  • PDF

A Development of High Power Activated Carbon Using the KOH Activation of Soft Carbon Series Cokes

  • Kim, Jung-Ae;Park, In-Soo;Seo, Ji-Hye;Lee, Jung-Joon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권2호
    • /
    • pp.81-86
    • /
    • 2014
  • The process parameter in optimized KOH alkali activation of soft carbon series coke material in high purity was set with DOE experiments design. The activated carbon was produced by performing the activation process based on the set process parameters. The specific surface area was measured and pore size was analyzed by $N_2$ absorption method for the produced activated carbon. The surface functional group was analyzed by Boehm method and metal impurities were analyzed by XRF method. The specific surface area was increased over 2,000 $m^2/g$ as the mixing ratio of activation agent increased. The micro pores in $5{\sim}15{\AA}$ and surface functional group under 0.4 meq/g were obtained. The contents of the metal impurity in activated carbon which is the factor for reducing the electrochemical characteristics was reduced less than 100 ppm through the cleansing process optimization. The electrochemical characteristics of activated carbon in 38.5 F/g and 26.6 F/cc were checked through the impedance measuring with cyclic voltammetry scan rate in 50~300 mV/s and frequency in 10 mHz ~100 kHz. The activated carbon was made in the optimized activation process conditions of activation time in 40 minutes, mixing ratio of activation agent in 4.5 : 1.0 and heat treatment temperature over $650^{\circ}C$.

Effect of Activation Temperature on CO2 Capture Behaviors of Resorcinol-based Carbon Aerogels

  • Moon, Cheol-Whan;Kim, Youngjoo;Im, Seung-Soon;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.57-61
    • /
    • 2014
  • In this study, carbon aerogel (CA) was synthesized using a soft-template method, and the optimum conditions for the adsorption of carbon dioxide ($CO_2$) by the carbon aerogel were evaluated by controlling the activation temperature. KOH was used as the activation agent at a KOH/CA activation ratio of 4:1. Three types of activated CAs were synthesized at activation temperatures of $800^{\circ}C$(CA-K-800), $900^{\circ}C$(CA-K-900), and $1000^{\circ}C$(CA-K-1000), and their surface and pore characteristics along with the $CO_2$ adsorption characteristics were examined. The results showed that with the increase in activation temperature from 800 to $900^{\circ}C$, the total pore volume and specific surface area sharply increased from 1.2165 to $1.2500cm^3/g$ and 1281 to $1526m^2/g$, respectively. However, the values for both these parameters decreased at temperatures above $1000^{\circ}C$. The best $CO_2$ adsorption capacity of 10.9 wt % was obtained for the CA-K-900 sample at 298 K and 1 bar. This result highlights the importance of the structural and textural characteristics of the carbon aerogel, prepared at different activation temperatures on $CO_2$ adsorption behaviors.

Function Approximation Based on a Network with Kernel Functions of Bounds and Locality : an Approach of Non-Parametric Estimation

  • Kil, Rhee-M.
    • ETRI Journal
    • /
    • 제15권2호
    • /
    • pp.35-51
    • /
    • 1993
  • This paper presents function approximation based on nonparametric estimation. As an estimation model of function approximation, a three layered network composed of input, hidden and output layers is considered. The input and output layers have linear activation units while the hidden layer has nonlinear activation units or kernel functions which have the characteristics of bounds and locality. Using this type of network, a many-to-one function is synthesized over the domain of the input space by a number of kernel functions. In this network, we have to estimate the necessary number of kernel functions as well as the parameters associated with kernel functions. For this purpose, a new method of parameter estimation in which linear learning rule is applied between hidden and output layers while nonlinear (piecewise-linear) learning rule is applied between input and hidden layers, is considered. The linear learning rule updates the output weights between hidden and output layers based on the Linear Minimization of Mean Square Error (LMMSE) sense in the space of kernel functions while the nonlinear learning rule updates the parameters of kernel functions based on the gradient of the actual output of network with respect to the parameters (especially, the shape) of kernel functions. This approach of parameter adaptation provides near optimal values of the parameters associated with kernel functions in the sense of minimizing mean square error. As a result, the suggested nonparametric estimation provides an efficient way of function approximation from the view point of the number of kernel functions as well as learning speed.

  • PDF

Structural Study of the Activated Carbon Fiber using Laser Raman Spectroscopy

  • Roh, Jae-Seung
    • Carbon letters
    • /
    • 제9권2호
    • /
    • pp.127-130
    • /
    • 2008
  • This study aims to find a correlation between XRD and Raman result of the activated carbon fibers as a function of its activation degrees. La of the isotropic carbon fiber prepared by oxidation in carbon dioxide gas have been observed using laser Raman spectroscopy. The basic structural parameters of the fibers were evaluated by XRD as well, and compared with Raman result. The La of the carbon fibers were measured to be 25.5 ${\AA}$ from Raman analysis and 23.6 ${\AA}$ from XRD analysis. La of the ACFs were 23.6 ${\AA}$ and 20.4 ${\AA}$, respectively, representing less ordered through activation process. It seems that the $I_D/I_G$ of Raman spectra were related to crystallite size(La). Raman spectroscopy has demonstrated its unique ability to detect structural changes during the activation of the fibers. There was good correlation between the La value obtained from Raman and XRD.

Analysis of activation, ohmic, and concentration losses in hydrogen fuelled PEM fuel cell

  • Rohan Kumar;K.A Subramanian
    • Advances in Energy Research
    • /
    • 제8권4호
    • /
    • pp.253-264
    • /
    • 2022
  • This paper deals with the effects of design (active area, current density, membrane conductivity) and operating parameters (temperature, relative humidity) on the performance of hydrogen-fuelled proton exchange membrane (PEM) fuel cell. The design parameter of a PEM fuel cell with the active area of the single cell considered in this study is 25 cm2 (5 × 5). The operating voltage and current density of the fuel cell were 0.7 V and 0.5 A/cm2 respectively. The variations of activation voltage, ohmic voltage, and concentration voltage with respect to current density are analyzed in detail. The membrane conductivity with variable relative humidity is also analyzed. The results show that the maximum activation overpotential of the fuel cell was 0.4358 V at 0.21 A/cm2 due to slow reaction kinetics. The calculated ohmic and concentrated overpotential in the fuel cell was 0.01395 V at 0.76 A/cm2 and 0.027 V at 1.46 A/cm2 respectively.

이중나선의 패턴 인식 분석과 CosExp와 시그모이드 활성화 함수를 사용한 캐스케이드 코릴레이션 알고리즘의 최적화 (Pattern Recognition Analysis of Two Spirals and Optimization of Cascade Correlation Algorithm using CosExp and Sigmoid Activation Functions)

  • 이상화
    • 한국산학기술학회논문지
    • /
    • 제15권3호
    • /
    • pp.1724-1733
    • /
    • 2014
  • 본 논문에서는 비모노톤함수(non-monotone function)인 CosExp(cosine-modulated symmetric Exponential function) 함수와 모노톤함수(monotone function)인 시그모이드 함수를 캐스케이드 코릴레이션 알고리즘(Cascade Correlation algorithm)의 학습에 병행해서 사용하여 이중나선문제(two spirals problem)의 패턴인식에 어떠한 영향이 있는지 분석하고 이어서 알고리즘의 최적화를 시도한다. 첫 번째 실험에서는 알고리즘의 후보뉴런에 CosExp 함수를 그리고 출력뉴런에는 시그모이드 함수를 사용하여 나온 인식된 패턴을 분석한다. 두 번째 실험에서는 반대로 CosExp 함수를 출력뉴런에서 사용하고 시그모이드 함수를 후보뉴런에 사용하여 실험하고 결과를 분석한다. 세 번째 실험에서는 후보뉴런을 위한 8개의 풀을 구성하여 변형된 다양한 시그모이드 활성화 함수(sigmoidal activation function)를 사용하고 출력뉴런에는 CosExp함수를 사용하여 얻게 된 입력공간의 인식된 패턴을 분석한다. 네 번째 실험에서는 시그모이드 함수의 변위를 결정하는 세 개의 파라미터 값을 유전자 알고리즘을 이용하여 얻는다. 이 파라미터 값들이 적용된 시그모이드 함수들은 후보뉴런의 활성화를 위해서 사용되고 출력뉴런에는 CosExp 함수를 사용하여 실험한 최적화 된 결과를 분석한다. 이러한 알고리즘의 성능평가를 위하여 각 학습단계 마다 입력패턴공간에서 인식된 이중나선의 형태를 그래픽으로 보여준다. 최적화 과정에서 은닉뉴런(hidden neuron)의 숫자가 28에서 15로 그리고 최종적으로 12개로 줄어서 학습 알고리즘이 최적화되었음을 확인하였다.

이산화탄소를 이용한 등방성 탄소섬유의 활성화과정 중 발생하는 구조변화(I)-XRD를 이용한 분석 (Microstructural Changes during Activation Process of Isotopic Carbon Fibers using CO2 Gas(I)-XRD Study)

  • 노재승
    • 한국재료학회지
    • /
    • 제13권11호
    • /
    • pp.742-748
    • /
    • 2003
  • The structural parameters such as Lc, La and d of $CO_2$activated isotropic carbon fibers(ACFs) were obtained from XRD in order to understand a development mechanism of micropores. And the structural parameters were compared with specific surface area(SSA) data. The $d_{002}$, Lc, and La of the original fiber were measured to be 4.04$\AA$, 6.2$\AA$, and 23.6$\AA$, respectively. Carbonization of outer-parts and oxidization of inner-parts of the original fibers were far from completeness. It was observed that the structural changes of the ACFs during activation take place severely, therefore the carbonization and the oxidization of the fibers take place simultaneous with pore developments. The $d_{002}$ of the ACFs was increased to be 2.80$\AA$, and the La of the ACFs was decreased to be 17.0$\AA$ by activation. It was shown that the pores are developed continuously from the outer-parts to the inner-parts of the fibers, therefore the SSA increases as a result of the development of pores fully to the inner-parts of the fiber when the burn-off degree was over :39%. It seems that the (002) planes of crystallites contribute to the micropore wall related to the super high SSA.SSA.