Browse > Article
http://dx.doi.org/10.3740/MRSK.2003.13.11.742

Microstructural Changes during Activation Process of Isotopic Carbon Fibers using CO2 Gas(I)-XRD Study  

Roh, J.S. (School of Advanced Materials and Systems Engineering, Kumoh National University of Technology)
Publication Information
Korean Journal of Materials Research / v.13, no.11, 2003 , pp. 742-748 More about this Journal
Abstract
The structural parameters such as Lc, La and d of $CO_2$activated isotropic carbon fibers(ACFs) were obtained from XRD in order to understand a development mechanism of micropores. And the structural parameters were compared with specific surface area(SSA) data. The $d_{002}$, Lc, and La of the original fiber were measured to be 4.04$\AA$, 6.2$\AA$, and 23.6$\AA$, respectively. Carbonization of outer-parts and oxidization of inner-parts of the original fibers were far from completeness. It was observed that the structural changes of the ACFs during activation take place severely, therefore the carbonization and the oxidization of the fibers take place simultaneous with pore developments. The $d_{002}$ of the ACFs was increased to be 2.80$\AA$, and the La of the ACFs was decreased to be 17.0$\AA$ by activation. It was shown that the pores are developed continuously from the outer-parts to the inner-parts of the fibers, therefore the SSA increases as a result of the development of pores fully to the inner-parts of the fiber when the burn-off degree was over :39%. It seems that the (002) planes of crystallites contribute to the micropore wall related to the super high SSA.SSA.
Keywords
ACFs; XRD; SSA; micropore structures; isotropic carbon fiber;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. C. Mittelmeijer-Hazeleger and J. M. Martin-Martinez, Carbon, 30, 695 (1992)   DOI   ScienceOn
2 M. A. Montes-Moran and R. J. Young, Carbon, 40, 845 (2002)   DOI   ScienceOn
3 S. J. Gregg and K. S. W. Sing, 'Adsorption, Surface Area and Porosity', Academic Press, London (1982)
4 P. J. M. Carrot and K. S. W. Sing, 'Characterization of Porous Solid', 77, Ed. by K. K. Unger, J. Rouquerol, K. S. W. Sing and H. Kral, Elsevier Sci. Publ., Amsterdam (1988)
5 H. Marsh, Carbon, 25, 49 (1987)   DOI   ScienceOn
6 R. M. Bustin, J. N. Rouzaud and J. V. Ross, Carbon, 33, 679 (1995)   DOI   ScienceOn
7 M. Endo, C. Kim, T. Karaki, T. Kasai, M. J. Matthews, S. D. M. Brown, M. S. Dresselhaus, T. Tamaki and Y. Nishimura, Carbon, 36, 1633 (1998)   DOI   ScienceOn
8 M. Shioya, T. Ojima and J. Yamashita, Carbon, 39, 1869 (2001)   DOI   ScienceOn
9 S. H. Yoon, Y. Korai, I. Mochida, K. Yokogawa, S. Fukuyama and M. Yoshimura, Carbon, 34, 83 (1996)   DOI   ScienceOn
10 M. Endo, Journal of Materials Science, 23, 598 (1988)   DOI
11 A. Oberlin, M. Villey and A. Combaz, Carbon, 18, 347 (1980)   DOI   ScienceOn
12 B. E. Warren, The Physical Review, 59, 693 (1941)   DOI
13 T. F. Yen, J. G. Erdman and S. S. Pollack, Analytical Chemistry, 33, 1587 (1961)   DOI
14 F. R. Ludwig Schoening, Fuel, 62, 1315 (1983)   DOI   ScienceOn
15 D. L. Wertz and J. L. Quin, Energy & Fuels, 12, 697 (1998)   DOI   ScienceOn
16 V. V. Kovalevski, P. R. Buseck and J. M. Cowley, Carbon, 39, 243 (2001)   DOI   ScienceOn
17 H. S. Shim and R. Hurt, Carbon 97, July 18-23, 438 ( 1997)
18 N. Yoshizawa, Y. Yamada and M, Shiraishi, Journal of Materials science, 33, 199 (1998)   DOI   ScienceOn
19 F. R. Ludwig Schoening, Fuel, 61, 695 (1982)   DOI   ScienceOn
20 P. Ehrburger, N. Pusset and P. Dziedzinlo, Carbon, 30, 1105 (1992)   DOI   ScienceOn
21 J. J. Freeman, F. G. R. Gimblett and K. S. W. Sing, Carbon, 27, 85 (1989)   DOI   ScienceOn
22 T. Suzuki and K. Kaneko, J. Colloid Interface Sci., 138, 590 (1990)   DOI   ScienceOn
23 K. Kaneko, C. Ishii, M. Ruike and H. Kuwabara, Carbon, 30, 1075 (1992)   DOI   ScienceOn
24 T. Mays, J. Howell, L. King, B. McEnaney and D. Edie, Carbon 95, July 16-21, 510 (1995)
25 F. Derbyshire, R. Andrews, D. Jacques, M. Jagtoyen, G. Kimber and T. Rantell, Fuel, 80, 345 (2001)   DOI   ScienceOn
26 Z. Ryu, H. Rong, J. Zheng, M. Wang and B. Zhang, Carbon, 40, 1131 (2002)   DOI   ScienceOn
27 Q. Chang, T. Liu and X. Cal, Carbon 95, July 16-21, 514 (1995)
28 J. R. Fryer, Carbon, 19, 431 (1981)   DOI   ScienceOn
29 M. Huttepain and A. Oberlin, Carbon, 28, 103 (1990)   DOI   ScienceOn
30 L. I. Schukin, M. V. Komievich, R. S. Vartapetjan and S, I. Beznisko, Carbon, 40, 2021 (2002)   DOI   ScienceOn
31 K. Kamegawa, K. Nishikubo and H. Yoshida, Carbon, 36, 433 (1998)   DOI   ScienceOn
32 A. Sharma, T. Kyotani and A. Tomita, Fuel, 78, 1203 (1999)   DOI   ScienceOn
33 D. Gondy and P. Ehrburger, Carbon, 35, 1745 (1997)   DOI   ScienceOn
34 X. Z. Sha, T. Kyotani and A. Tomita, Fuel, 69, 1564 (1990)   DOI   ScienceOn
35 J. S. Roh and D. S. Suhr, Korean J. Materials Research, 8, 120 (1998)
36 N. Yoshizawa, K. Maruyama, Y. Yamada and M. Zielinska-Blajet, Fuel, 79, 1461 (2000)   DOI   ScienceOn
37 J. S. Roh and D. S. Suhr, Korean J. Materials Research, 7, 121 (1997)
38 J. S. Roh and D. S. Suhr, Korean J. Materials Research, 8, 114 (1998)
39 J. Biscoe and B. E. Warren, Journal of Applied Physics, 13, 364 (1942)   DOI
40 A. K. Kercher and D. C. Nagle, Carbon, 41, 15 (2003)   DOI   ScienceOn
41 S. Ergun and V. H. Tiensuu, Fuel, 38, 64 (1959)