• Title/Summary/Keyword: Activation Process

Search Result 1,771, Processing Time 0.028 seconds

A study on the Plan for Organization Activation use analysis of Success factor Integration Information System (통합정보시스템 구축 프로젝트 성공 요인 분석을 통한 조직 활성화 방안에 대한 연구)

  • Park, Jong-Ki;Kang, Kyong-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.5
    • /
    • pp.231-242
    • /
    • 2006
  • Since 1990's, many enterprises have constructed Integration Information System. Especially, they want to become an advanced company use ERP package. Already, ERP system come to high level which is stabilized and support independent business process of many industry sectors. Therefore, important success factors for ERP project are change management and organization activation. Although most companies had previous good plans, but those are not satisfied. Because of failed to change management and discontinued next activity for promotion. This paper studied success factors of project team and plan for organization activation. Also, it proposed next study subject about investigate the role of the member of task force team as a factor that makes the ERP system a success. The results of this study can be used for a successful construction of the ERP system as a solution about Internal problems of Project team.

Integrin activation

  • Ginsberg, Mark H.
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.655-659
    • /
    • 2014
  • Integrin-mediated cell adhesion is important for development, immune responses, hemostasis and wound healing. Integrins also function as signal transducing receptors that can control intracellular pathways that regulate cell survival, proliferation, and cell fate. Conversely, cells can modulate the affinity of integrins for their ligands a process operationally defined as integrin activation. Analysis of activation of integrins has now provided a detailed molecular understanding of this unique form of "inside-out" signal transduction and revealed new paradigms of how transmembrane domains (TMD) can transmit long range allosteric changes in transmembrane proteins. Here, we will review how talin and mediates integrin activation and how the integrin TMD can transmit these inside out signals.

Activation Effect on Palladium Electroless Plating of Porous Stainless Steel Support (팔라듐 무전해 도금을 위한 활성화 처리에 대한 연구)

  • 허장은;우상국;서동수;한성욱;한인섭;서두원
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.165-170
    • /
    • 1999
  • Palladium membranes have high selectivity of separation and removal of hydrogen to chemical process at high temperature. For the development of hydrogen permeable membrane, palladium was deposited on porous stainless steel support by electroless plating method. In this work, the activation effect on the surface of stainless steel support has been investigated for the effective palladium plating. The morphology and microstructure were characterized by SEM and the composition was analyzed by EDX. It is found that the composition of deposited nuclei on the stainless steel support was changed in accordance with activation cycles. It is also observed that Sn-enriched nuclei has been changed to Pd-enriched nuclei over the fifteenth activation. The uniform deposition of the dense palladium layer on porous stainless steel support has been performing with Sn-enriched nuclei and comparing with Pd-enriched nuclei.

  • PDF

Unequal Activation Volumes of Wall-motion and Nucleation Process in Co/Pt Multilayers

  • Cho, Yoon-Chul;Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • v.5 no.4
    • /
    • pp.116-119
    • /
    • 2000
  • Magnetic field dependence of magnetization reversal in Co/Pt multilayers was quantitatively investigated. Serial samples of Co/Pt multilayers were prepared by dc-magnetron sputtering under various Ar pressures. Magnetization reversal was monitored by magnetization viscosity measurement and direct domain observation using a magneto-optical microscope system, and the wall-motion speed V and the nucleation rate R were determined using a domain reversal model based on time-resolved domain reversal patterns. Both V and R were found to be exponentially dependent on the applied reversing field. From the exponential dependencies, the activation volumes for wall motion and nucleation could be determined, based on a thermally activated relaxation model, and the wall-motion activation volume was found to be slightly larger than the nucleation activation volume.

  • PDF

Preparation of PAN-based Activated Carbon Fibers by Physical Activation (물리적 활성화에 의한 PAN계 활성탄소섬유의 제조)

  • 임연수;김기원;정승훈;김기덕;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1016-1021
    • /
    • 1999
  • In this study activated carbon fibers were prepared from PAN-based carbon fibers by physical activation with steam or carbon dioxide. The variations in specific surface area amount of iodine adsorption and pore size distribution of the activated carbon fibers after the activation process were discussed. in steam activation BET surface area of about 1019 m2/g was obtained after 77% burn-off while carbn dioxide activation produced ACF with 694m2/g of BET surface area after 52% burn-off. However carbon dioxide activation produced at a similar degree of activation higher micropore volume(0.37 cc/g) and amount of iodine adsorption (1589mg/g) than steam activation. Nitrogen adsorption isotherms for (PAN based activated carbon fibers that prepared by physical activation were of type I in the Brunauer-Deming-Deming-Teller classification

  • PDF

Alleviation of Vanishing Gradient Problem Using Parametric Activation Functions (파라메트릭 활성함수를 이용한 기울기 소실 문제의 완화)

  • Ko, Young Min;Ko, Sun Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.10
    • /
    • pp.407-420
    • /
    • 2021
  • Deep neural networks are widely used to solve various problems. However, the deep neural network with a deep hidden layer frequently has a vanishing gradient or exploding gradient problem, which is a major obstacle to learning the deep neural network. In this paper, we propose a parametric activation function to alleviate the vanishing gradient problem that can be caused by nonlinear activation function. The proposed parametric activation function can be obtained by applying a parameter that can convert the scale and location of the activation function according to the characteristics of the input data, and the loss function can be minimized without limiting the derivative of the activation function through the backpropagation process. Through the XOR problem with 10 hidden layers and the MNIST classification problem with 8 hidden layers, the performance of the original nonlinear and parametric activation functions was compared, and it was confirmed that the proposed parametric activation function has superior performance in alleviating the vanishing gradient.

Identification of phospholipase Cβ downstream effect on transient receptor potential canonical 1/4, transient receptor potential canonical 1/5 channels

  • Ko, Juyeon;Myeong, Jongyun;Kwak, Misun;Jeon, Ju-Hong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.357-366
    • /
    • 2019
  • $G{\alpha}_q$-coupled receptor stimulation was implied in the activation process of transient receptor potential canonical (TRPC)1/4 and TRPC1/5 heterotetrameric channels. The inactivation occurs due to phosphatidylinositol 4,5-biphosphate ($PI(4,5)P_2$) depletion. When $PI(4,5)P_2$ depletion was induced by muscarinic stimulation or inositol polyphosphate 5-phosphatase (Inp54p), however, the inactivation by muscarinic stimulation was greater compared to that by Inp54p. The aim of this study was to investigate the complete inactivation mechanism of the heteromeric channels upon $G{\alpha}_q$-phospholipase $C{\beta}$ ($G{\alpha}_q-PLC{\beta}$) activation. We evaluated the activity of heteromeric channels with electrophysiological recording in HEK293 cells expressing TRPC channels. TRPC1/4 and TRPC1/5 heteromers undergo further inhibition in $PLC{\beta}$ activation and calcium/protein kinase C (PKC) signaling. Nevertheless, the key factors differ. For TRPC1/4, the inactivation process was facilitated by $Ca^{2+}$ release from the endoplasmic reticulum, and for TRPC1/5, activation of PKC was concerned mostly. We conclude that the subsequent increase in cytoplasmic $Ca^{2+}$ due to $Ca^{2+}$ release from the endoplasmic reticulum and activation of PKC resulted in a second phase of channel inhibition following $PI(4,5)P_2$ depletion.

Improvement of Photoelectrochemical Properties through Activation Process of p-type GaN (p-type GaN의 Activation을 통한 광전기화학적 특성 향상)

  • Bang, Seung Wan;Kim, Haseong;Bae, Hyojung;Ju, Jin-Woo;Kang, Sung-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.59-63
    • /
    • 2017
  • The n-type GaN semiconductor has excellent properties as a photoelectrode, but it has disadvantage that its reliability is deteriorated due to the photocorrosion because the oxygen reaction occurs on the surface. For this reason, there are fundamental attempts to avoid photocorrosion reaction of GaN surfaces by using the p-type GaN as a photoelectrode where hydrogen generation reaction occurs on the surface. However, p-type GaN has a problem of low efficiency because of its high resistivity and low hole mobility. In this study, we try to improve the photocurrent efficiency by activation process for the p-type GaN. The p-type GaN was annealed for 1 min. at $500^{\circ}C$ in $N_2$ atmosphere. Hall effect measurement system was used for the electrical properties and potentiostat (PARSTAT4000) was used to measure the photoelectrochemical (PEC) characteristics. Consequently, the photocurrent density was improved more than 1.5 times by improving the activation process for the p-type GaN. Also, its reliability was maintained for 3 hours.

Preparation and Characterization of high-quality activated carbon by KOH activation of pitch precursors (KOH 활성화에 의한 피치계 고품질 활성탄의 제조 및 특성)

  • Lee, Eun-Ji;Kwon, Soon-Hyung;Choi, Poo-Reum;U, Jong-Pyo;Jung, Ji-Chul;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.408-415
    • /
    • 2014
  • In order to prepare high-quality activated carbons (ACs), coal tar pitch (CTP), and mixtures of CTP and petroleum pitch (PP) were activated with KOH. The ACs prepared by activation of CTP in the range of $700{\sim}1000^{\circ}C$ for 1~5 h had very porous textures with large specific surface areas of $2470{\sim}3081m^2/g$. The optimal activation conditions of CTP were determined as CTP/KOH ratio of 1:4, activation temperature of $900^{\circ}C$, and activation time of 3 h. The obtained AC showed the highest micro-pore volume, and pretty high specific surface area and meso-pore volume. The micro-pore volumes and specific areas of activated mixtures of CTP and PP were similar to each other but the meso-pore volume could be increased. In order to change the degree of crystallinity of precursors before KOH activation process, the CTPs were carbonized in the range of $500{\sim}900^{\circ}C$. As the carbonization temperature increased, the specific surface area and pore volume of the activated ACs with the same activation conditions for CTP decreased dramatically. It was demonstrated that the increased pore size distribution of AC electrodes in the range of 1 to 2 nm plays an important role in the performance of electric double-layer capacitor.

Papaverine Exerts Neuroprotective Effect by Inhibiting NLRP3 Inflammasome Activation in an MPTP-Induced Microglial Priming Mouse Model Challenged with LPS

  • Leem, Yea-Hyun;Park, Jin-Sun;Park, Jung-Eun;Kim, Do-Yeon;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.295-302
    • /
    • 2021
  • Microglial priming is the process of microglial proliferation and activation in response to neurodegeneration and abnormal protein accumulation. Priming makes microglia susceptible to secondary inflammatory stimuli and causes exaggerated inflammatory responses. In the present study, we established a microglial priming model in mice by administering a single injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg). MPTP induced microglial activation without dopaminergic degeneration; however, subsequent treatment with a sub-toxic dose of lipopolysaccharides (LPS) induced an amplified inflammatory response and caused nigrostriatal dopaminergic degeneration. These pathological and inflammatory changes, including microglial activation and dopaminergic cell loss in the substantia nigra (SN) area were reversed by papaverine (PAP) administration. In addition, MPTP/LPS enhanced interleukin-1β (IL-1β) expression and processing via nod-like receptor protein 3 (NLRP3) inflammasome activation in the SN region of mice. However, PAP treatment suppressed inflammasome activation and subsequent IL-1β maturation. Moreover, PAP inhibited nuclear factor-κB (NF-κB) and enhanced cAMP-response element binding protein (CREB) activity in the SN of MPTP/LPS mice. These results suggest that PAP inhibits the activation of NLRP3 inflammasome by modulating NF-κB and CREB signaling pathways, which results in reduced microglial activation and neuronal cell death. Thus, PAP may be a potential candidate for the treatment of Parkinsons's disease, which is aggravated by systemic inflammation.