• Title/Summary/Keyword: Activation Model

Search Result 1,755, Processing Time 0.026 seconds

Prediction model for the hydration properties of concrete

  • Chu, Inyeop;Amin, Muhammad Nasir;Kim, Jin-Keun
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.377-392
    • /
    • 2013
  • This paper investigates prediction models estimating the hydration properties of concrete, such as the compressive strength, the splitting tensile strength, the elastic modulus,and the autogenous shrinkage. A prediction model is suggested on the basis of an equation that is formulated to predict the compressive strength. Based on the assumption that the apparent activation energy is a characteristic property of concrete, a prediction model for the compressive strength is applied to hydration-related properties. The hydration properties predicted by the model are compared with experimental results, and it is concluded that the prediction model properly estimates the splitting tensile strength, elastic modulus, and autogenous shrinkage as well as the compressive strength of concrete.

Fructose-arginine, a non-saponin molecule of Korean Red Ginseng, attenuates AIM2 inflammasome activation

  • Ahn, Huijeong;Han, Byung-Cheol;Lee, Seung-Ho;Lee, Geun-Shik
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.808-814
    • /
    • 2020
  • Background: Korean Red Ginseng extract (RGE) has been reported to act as an inflammasome modulator. Ginsenosides, saponin molecules of RGE, selectively inhibit activation of NLRP3 and AIM2 inflammasomes, while non-saponin molecules of RGE upregulate inflammasome components associated with the initiation of NLRP3 inflammasome activation. In this study, we investigated the effect of non-saponin components of RGE on AIM2 inflammasome activation. Methods: The role of non-saponins of RGE on AIM2 inflammasomes was tested in mouse bone marrow-derived macrophages, a human monocyte-like cell line, and a mouse animal model. Cells or mice were transfected with dsDNA or inoculated with Listeria monocytogenes to activate AIM2 inflammasomes. Several indices of inflammasome activation were examined via immunoblot or ELISA analysis. Results: The non-saponin fraction and saponin-eliminating fraction (SEF) of RGE selectively attenuated the activation of AIM2 inflammasomes, but not that of NLRP3 or NLRC4 inflammasomes. Fructose-arginine, an amino-sugar, was shown to be effective against AIM2 inflammasome activation. Conclusion: Non-saponins of RGE, such as fructose-arginine, might be effective in regulating infectious and autoimmune diseases resulting from AIM2 inflammasome activation.

Prediction Model for the Microstructure and Properties in Weld Heat Affected Zone: III. Prediction Model for the Austenite Grain Growth Considering the Influence of Initial Austenite Grain Size in Weld HAZ of Precipitates Free Low Alloyed Steel (용접 열영향부 미세조직 및 재질 예측 모델링 : III. 석출물 - Free 저합금강의 초기 오스테나이트 결정립크기의 영향을 고려한 용접 열영향부 오스테나이트 결정립성장 예측 모델)

  • Uhm, Sang-Ho;Moon, Joon-Oh;Jeong, Hong-Chul;Lee, Jong-Bong;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.24 no.4
    • /
    • pp.39-49
    • /
    • 2006
  • The austenite grain growth model in low alloyed steel HAZ without precipitates was proposed by analyzing isothermal grain growth behavior. Steels used in this study were designed to investigate the effect of alloying elements. Meanwhile, a systematic procedure was proposed to prevent inappropriate neglect of initial grain size (D0) and misreading both time exponent and activation energy for isothermal grain growth. It was found that the time exponent was almost constant, irrespectively of temperature and alloying elements, and activation energy increased with the addition of alloying elements. From quantification of the effect of alloying elements on the activation energy, an isothermal grain growth model was presented. Finally, combining with the additivity rule, the austenite grain size in the CGHAZ was predicted.

Deep-learning-based gestational sac detection in ultrasound images using modified YOLOv7-E6E model

  • Tae-kyeong Kim;Jin Soo Kim;Hyun-chong Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.627-637
    • /
    • 2023
  • As the population and income levels rise, meat consumption steadily increases annually. However, the number of farms and farmers producing meat decrease during the same period, reducing meat sufficiency. Information and Communications Technology (ICT) has begun to be applied to reduce labor and production costs of livestock farms and improve productivity. This technology can be used for rapid pregnancy diagnosis of sows; the location and size of the gestation sacs of sows are directly related to the productivity of the farm. In this study, a system proposes to determine the number of gestation sacs of sows from ultrasound images. The system used the YOLOv7-E6E model, changing the activation function from sigmoid-weighted linear unit (SiLU) to a multi-activation function (SiLU + Mish). Also, the upsampling method was modified from nearest to bicubic to improve performance. The model trained with the original model using the original data achieved mean average precision of 86.3%. When the proposed multi-activation function, upsampling, and AutoAugment were applied, the performance improved by 0.3%, 0.9%, and 0.9%, respectively. When all three proposed methods were simultaneously applied, a significant performance improvement of 3.5% to 89.8% was achieved.

Simultaneous Motion Recognition Framework using Data Augmentation based on Muscle Activation Model (근육 활성화 모델 기반의 데이터 증강을 활용한 동시 동작 인식 프레임워크)

  • Sejin Kim;Wan Kyun Chung
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.203-212
    • /
    • 2024
  • Simultaneous motion is essential in the activities of daily living (ADL). For motion intention recognition, surface electromyogram (sEMG) and corresponding motion label is necessary. However, this process is time-consuming and it may increase the burden of the user. Therefore, we propose a simultaneous motion recognition framework using data augmentation based on muscle activation model. The model consists of multiple point sources to be optimized while the number of point sources and their initial parameters are automatically determined. From the experimental results, it is shown that the framework has generated the data which are similar to the real one. This aspect is quantified with the following two metrics: structural similarity index measure (SSIM) and mean squared error (MSE). Furthermore, with k-nearest neighbor (k-NN) or support vector machine (SVM), the classification accuracy is also enhanced with the proposed framework. From these results, it can be concluded that the generalization property of the training data is enhanced and the classification accuracy is increased accordingly. We expect that this framework reduces the burden of the user from the excessive and time-consuming data acquisition.

Activation Energy for the Decapsulation of Small Molecules from A-Type Zeolites

  • 김정섭;황계정;홍석봉;노경태
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.280-286
    • /
    • 1997
  • Potential energy function sets for some ion-exchanged A-type zeolites, K-A and Rb11Na1-A, were determined by introducing the X-ray crystal structures as constraints. The potential functions reproduced well the X-ray crystal structures of the monovalent ion-exchanged zeolites. The activation energies for the en- or de-capsulation of small molecules (H2, O2, N2, and CH4) and inert gases from the α-cage of model zeolites (Na-A, K-A, Rb11Na1-A, and Cs3Na9-A) were obtained by the molecular mechanical calculations. The calculated activation energies agreed well with experimental results.

Hot Water Extract of Wheat Bran Attenuates White Matter Injury in a Rat Model of Vascular Dementia

  • Lim, Sun Ha;Lee, Jongwon
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.145-155
    • /
    • 2014
  • Vascular dementia is characterized by white matter lesions involving the demyelination and activation of astrocytes and microglia. In a previous study, we showed that the supernatant of a laboratory-scale, hot water extract of ground whole wheat (TALE) attenuated white matter injury and astrocytic activation in a rat model of bilateral common carotid artery occlusion (BCCAO). In the present study, we made several modifications to the hot water extraction process to remove starch and enable large-scale production. We used wheat bran (WB), which contains less starch, instead of ground whole wheat. In addition, we removed starch granules with a decanter before hot water extraction. The final product, wheat bran extract (WBE), contained 2.42% arabinose, a surrogate marker of arabinoxylan, which is an active constituent of WBE. Supplementation of the rat model of BCCAO with WBE (400 mg/kg/day) for 33 days attenuated white matter injury, which was assessed by Luxol Fast Blue staining, in the corpus callosum (cc) and optic tract (opt) regions. Attenuation of white matter injury in the opt region was accompanied by improvement of the pupillary light reflex. Immunochemical staining revealed that supplementation with WBE reduced astrocytic activation in the cc and opt regions and reduced microglial activation in the opt region. These findings indicate that supplementation with WBE is effective at attenuating white matter injury accompanied by the inhibition of astrocytic and microglial activation. Therefore, extracts from WB, a cheap by-product of wheat milling, can be developed as a nutraceutical to prevent vascular dementia, a disease for which there is no approved pharmaceutical treatment.

State Dependence of Activation Energies for High Temperature Creep of A17075 Alloy (A17075합금의 고온 크리프 활성화에너지의 상태의존성)

  • 조용이;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.131-140
    • /
    • 1993
  • The activation energy for high temperature creep is associated with stresses, temperatures, straians And the creep strain appears to be a function of a temperature, compensated time, namely $te^{-}$.DELTA.H/RT/, and the stress. In fact this functional relation appears to be isomorphic to material structure by x-ray analyses. Applying this functional relation, the dependance of activation energy for A17075 creep was investigated. The activation energy for creep is insensitive to stress, temperature, structure, and strain. And phenomenological model agrees with experimental creep data.

Ultimate axial load of rectangular concrete-filled steel tubes using multiple ANN activation functions

  • Lemonis, Minas E.;Daramara, Angeliki G.;Georgiadou, Alexandra G.;Siorikis, Vassilis G.;Tsavdaridis, Konstantinos Daniel;Asteris, Panagiotis G.
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.459-475
    • /
    • 2022
  • In this paper a model for the prediction of the ultimate axial compressive capacity of square and rectangular Concrete Filled Steel Tubes, based on an Artificial Neural Network modeling procedure is presented. The model is trained and tested using an experimental database, compiled for this reason from the literature that amounts to 1193 specimens, including long, thin-walled and high-strength ones. The proposed model was selected as the optimum from a plethora of alternatives, employing different activation functions in the context of Artificial Neural Network technique. The performance of the developed model was compared against existing methodologies from design codes and from proposals in the literature, employing several performance indices. It was found that the proposed model achieves remarkably improved predictions of the ultimate axial load.

A Proposal for Predicting the Compressive Strength of Ultra-high Performance Concrete Using Equivalent Age (등가재령을 활용한 초고성능 콘크리트의 압축강도 예측식 제안)

  • Baek, Sung-Jin;Park. Jae-Woong;Han Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.149-150
    • /
    • 2023
  • This study proposes the most suitable strength prediction model equation for UHPC by calculating the apparent activation energy of UHPC according to the curing temperature and deriving the integrated temperature and compressive strength prediction equation. The results are summarized as follows. The apparent activation energy was calculated using the Arrhenius function, which was calculated as 21.09 KJ/mol. A model equation suitable for UHPC was calculated, and when the Flowman model equation was used, it was confirmed that it was suitable for the properties of UHPC using a condensation promoting super plasticizing agent.

  • PDF