• Title/Summary/Keyword: Activation Channels

검색결과 268건 처리시간 0.026초

Acetylcholine Induces Hyperpolarization Mediated by Activation of $K_{(ca)}$ Channels in Cultured Chick Myoblasts

  • Lee, Do-Yun;Han, Jae-Hee;Park, Jae-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권1호
    • /
    • pp.37-43
    • /
    • 2005
  • Our previous report demonstrated that chick myoblasts are equipped with $Ca^{2+}$-permeable stretchactivated channels and $Ca^{2+}-activated$ potassium channels ($K_{Ca}$), and that hyperpolarization-induced by $K_{Ca}$ channels provides driving force for $Ca^{2+}$ influx through the stretch-activated channels into the cells. Here, we showed that acetylcholine (ACh) also hyperpolarized the membrane of cultured chick myoblasts, suggesting that nicotinic acetylcholine receptor (nAChR) may be another pathway for $Ca^{2+}$ influx. Under cell-attatched patch configuration, ACh increased the open probability of $K_{Ca}$ channels from 0.007 to 0.055 only when extracellular $Ca^{2+}$ was present. Nicotine, a nAChR agonist, increased the open probability of $K_{Ca}$ channels from 0.008 to 0.023, whereas muscarine failed to do so. Since the activity of $K_{Ca}$ channel is sensitive to intracellular $Ca^{2+}$ level, nAChR seems to be capable of inducing $Ca^{2+}$ influx. Using the $Ca^{2+}$ imaging analysis, we were able to provide direct evidence that ACh induced $Ca^{2+}$ influx from extracellular solution, which was dramatically increased by valinomycin-mediated hyperpolarization. In addition, ACh hyperpolarized the membrane potential from $-12.5{\pm}3$ to $-31.2{\pm}5$ mV by generating the outward current through $K_{Ca}$ channels. These results suggest that activation of nAChR increases $Ca^{2+}$ influx, which activates $K_{Ca}$ channels, thereby hyperpolarizing the membrane potential in chick myoblasts.

Taxifolin Glycoside Blocks Human ether-a-go-go Related Gene $K^+$ Channels

  • Yun, Jihyun;Bae, Hyemi;Choi, Sun Eun;Kim, Jung-Ha;Choi, Young Wook;Lim, Inja;Lee, Chung Soo;Lee, Min Won;Ko, Jae-Hong;Seo, Seong Jun;Bang, Hyoweon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권1호
    • /
    • pp.37-42
    • /
    • 2013
  • Taxifolin glycoside is a new drug candidate for the treatment of atopic dermatitis (AD). Many drugs cause side effects such as long QT syndrome by blocking the human ether-a-go-go related gene (hERG) $K^+$ channels. To determine whether taxifolin glycoside would block hERG $K^+$ channels, we recorded hERG $K^+$ currents using a whole-cell patch clamp technique. We found that taxifolin glycoside directly blocked hERG $K^+$ current in a concentration-dependent manner ($EC_{50}=9.6{\pm}0.7{\mu}M$). The activation curve of hERG $K^+$ channels was negatively shifted by taxifolin glycoside. In addition, taxifolin glycoside accelerated the activation time constant and reduced the onset of the inactivation time constant. These results suggest that taxifolin glycoside blocks hERG $K^+$ channels that function by facilitating activation and inactivation process.

128채널 심장전기도 시스템의 증폭기 설계 (The design of amplifier for 128 channels Cardiac-activation system)

  • 한영오
    • 한국컴퓨터산업학회논문지
    • /
    • 제8권2호
    • /
    • pp.123-130
    • /
    • 2007
  • 본 논문에서는 신호조정 회로로서 필수적인 다중 채널 심장 전기도 전치 증폭기를 제작하기 위한 설계조건의 분석 및 전기 회로적 해석을 수행하였다. 설계된 회로는 기존의 64 채널의 공간 분해능을 향상시키기 위하여 128채널로 구성하였으며, 전치증폭기는 입력회로부, 차동증폭부, 오른다리구동회로 및 주증폭기의 노치필터로 구성되도록 설계하였다.

  • PDF

Encainide, a class Ic anti-arrhythmic agent, blocks voltage-dependent potassium channels in coronary artery smooth muscle cells

  • Hongliang Li;Yue Zhou;Yongqi Yang;Yiwen Zha;Bingqian Ye;Seo-Yeong Mun;Wenwen Zhuang;Jingyan Liang;Won Sun Park
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권4호
    • /
    • pp.399-406
    • /
    • 2023
  • Voltage-dependent K+ (Kv) channels are widely expressed on vascular smooth muscle cells and regulate vascular tone. Here, we explored the inhibitory effect of encainide, a class Ic anti-arrhythmic agent, on Kv channels of vascular smooth muscle from rabbit coronary arteries. Encainide inhibited Kv channels in a concentration-dependent manner with an IC50 value of 8.91 ± 1.75 μM and Hill coefficient of 0.72 ± 0.06. The application of encainide shifted the activation curve toward a more positive potential without modifying the inactivation curve, suggesting that encainide inhibited Kv channels by altering the gating property of channel activation. The inhibition by encainide was not significantly affected by train pulses (1 and 2 Hz), indicating that the inhibition is not use (state)-dependent. The inhibitory effect of encainide was reduced by pretreatment with the Kv1.5 subtype inhibitor. However, pretreatment with the Kv2.1 subtype inhibitor did not alter the inhibitory effects of encainide on Kv currents. Based on these results, encainide inhibits vascular Kv channels in a concentration-dependent and use (state)-independent manner by altering the voltage sensor of the channels. Furthermore, Kv1.5 is the main Kv subtype involved in the effect of encainide.

Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection

  • Singh, Lovedeep;Kulshrestha, Ritu;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권3호
    • /
    • pp.225-234
    • /
    • 2018
  • Adenosine is a naturally occurring breakdown product of adenosine triphosphate and plays an important role in different physiological and pathological conditions. Adenosine also serves as an important trigger in ischemic and remote preconditioning and its release may impart cardioprotection. Exogenous administration of adenosine in the form of adenosine preconditioning may also protect heart from ischemia-reperfusion injury. Endogenous release of adenosine during ischemic/remote preconditioning or exogenous adenosine during pharmacological preconditioning activates adenosine receptors to activate plethora of mechanisms, which either independently or in association with one another may confer cardioprotection during ischemia-reperfusion injury. These mechanisms include activation of $K_{ATP}$ channels, an increase in the levels of antioxidant enzymes, functional interaction with opioid receptors; increase in nitric oxide production; decrease in inflammation; activation of transient receptor potential vanilloid (TRPV) channels; activation of kinases such as protein kinase B (Akt), protein kinase C, tyrosine kinase, mitogen activated protein (MAP) kinases such as ERK 1/2, p38 MAP kinases and MAP kinase kinase (MEK 1) MMP. The present review discusses the role and mechanisms involved in adenosine preconditioning-induced cardioprotection.

Evidence for the Participation of ATP-sensitive Potassium Channels in the Antinociceptive Effect of Curcumin

  • Paz-Campos, Marco Antonio De;Chavez-Pina, Aracely Evangelina;Ortiz, Mario I;Castaneda-Hernandez, Gilberto
    • The Korean Journal of Pain
    • /
    • 제25권4호
    • /
    • pp.221-227
    • /
    • 2012
  • Background: It has been reported that curcumin, the main active compound of Curcuma longa, also known as turmeric, exhibits antinociceptive properties. The aim of this study was to examine the participation of ATP-sensitive potassium channels ($K_{ATP}$ channels) and, in particular, that of the L-arginine-nitric oxide-cyclic GMP-$K_{ATP}$ channel pathway, in the antinociceptive effect of curcumin. Methods: Pain was induced by the intraplantar injection of 1% formalin in the right hind paw of Wistar rats. Formalin-induced flinching behavior was interpreted as an expression of nociception. The antinociceptive effect of oral curcumin was explored in the presence and absence of local pretreatment with L-NAME, an inhibitor of nitric oxide synthase, ODQ, an inhibitor of soluble guanylyl cyclase, and glibenclamide, a blocker of $K_{ATP}$ channels. Results: Oral curcumin produced a dose-dependent antinociceptive effect in the 1% formalin test. Curcumin-induced antinociception was not altered by local L-NAME or ODQ, but was significantly impaired by glibenclamide. Conclusions: Our results confirm that curcumin is an effective antinociceptive agent. Curcumin-induced antinociception appears to involve the participation of $K_{ATP}$ channels at the peripheral level, as local injection of glibenclamide prevented its effect. Activation of $K_{ATP}$ channels, however, does not occur by activation of the L-arginine-nitric oxide-cGMP-$K_{ATP}$ channel pathway.

Short-term activation of synaptic transmission by acute KCl application significantly reduces somatic A-type K+ current

  • Song, Jung-Yop;Kim, Hye-Ji;Jung, Sung-Cherl;Kang, Moon-Seok
    • Journal of Medicine and Life Science
    • /
    • 제15권2호
    • /
    • pp.62-66
    • /
    • 2018
  • A-type $K^+$ ($I_A$) channels are transiently activated in the suprathreshold membrane potential and then rapidly inactivated. These channels play roles to control the neuronal excitability in pyramidal neurons in hippocampi. We here electrophysiologically tested if regulatory functions of $I_A$ channels might be targeted by acute activation of glutamatergic synaptic transmission in cultured hippocampal neurons(DIV 6~8). The application of high KCl in recording solutions(10 mM, 2 min) to increase presynaptic glutamate release, significantly reduced the peak of somatic $I_A$ without changes of gating kinetics. This indicates that neuronal excitation induced by the enhancement of synaptic transmission may process with distinctive signaling cascades to affect voltage-dependent ion channels in hippocampal neurons. Therefore, it is possible that short-lasting enhancement of synaptic transmission is functionally restricted in local synapses without effects on intracellular signaling cascades affecting a whole neuron, efficiently and rapidly enhancing synaptic functions in hippocampal network.

Purinergic-mediated Calcium Homeostasis and Dopamine R~lease in PC 12 Cells: Effect of Ethanol

  • Kim, Won-Ki
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1997년도 학술발표회
    • /
    • pp.16-16
    • /
    • 1997
  • Extracelluar ATP evokes many biological processes, including neuronal excitation and neurotransmitter secretion, through activation of purinergic P2 receptors. Although excitatory and inhibitory receptor-operated channels (ROC) and voltage-dependent calcium channels (VDCC) have been reported to be altered by acute and chronic exposure to ethanol, little is known of the ethanol effects on purinergic receptor-operated channels in neuronal cells.(omitted)

  • PDF

Painful Channels in Sensory Neurons

  • Lee, Yunjong;Lee, Chang-Hun;Oh, Uhtaek
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.315-324
    • /
    • 2005
  • Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as $A{\alpha}$, $-{\beta}$, $-{\delta}$ and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.

DTNB oxidation effects on T-type $Ca^{2+}$ channel isoforms

  • Lee, Sang-Soo;Kang, Ho-Won;Park, Jin-Yong;Lee, Jung-Ha
    • Animal cells and systems
    • /
    • 제15권2호
    • /
    • pp.131-138
    • /
    • 2011
  • Redox regulation is one of the ubiquitous mechanisms to modulate ion channels. We here investigated how 5,5'-dithio-bis (2-nitrobenzoic acid), a cysteine specific oxidizing reagent, modulates $Ca_v3.1$ and $Ca_v3.2$ T-type $Ca^{2+}$ channels expressed in Xenopus oocytes. Application of the reagent inhibited $Ca_v3.1$ and $Ca_v3.2$ currents in a dose-dependent manner. The oxidizing reagent (1 mM) reduced the peak amplitude of $Ca_v3.1$ and $Ca_v3.2$ currents by ~50% over 2-3 minutes and the decreased currents were fully recovered upon washout of it. The reagent slowed the activation and inactivation kinetics of $Ca_v3.1$, $Ca_v3.2$, and $Ca_v3.3$ channel currents. Notably, the reagent positively shifted both activation and steady-state inactivation curves of $Ca_v3.1$, while it did not those of $Ca_v3.2$. Utilizing chimeric channels from $Ca_v3.1$ and $Ca_v3.2$, we localized the domains III and IV of $Ca_v3.1$ responsible for the positive shifts of channel activation and steady-state inactivation. These findings provide hints relevant to the electrophysiological and molecular mechanisms accounting for the oxidative regulation of T-type channels.