• Title/Summary/Keyword: Activated sludge process

Search Result 415, Processing Time 0.022 seconds

Determination of Biological kinetic Parameters for Pharmaceutical Wastewater (제약 폐수의 생물학적 동력학 계수 측정)

  • Lee Young-Rak;Choi Kwang-Keun;Lee Jin-Won
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.49-53
    • /
    • 2006
  • The aim of this research is to estimate the values of biological kinetic parameters of pharmaceutical wastewater for understanding biochemical properties. Maximum specific growth rate (${\mu}m$), yield coefficient (Y), and half-velocity coefficient (KS) were determined using oxygen uptake rate (OUR), and the results were 10.49/day (0.437/hr), 0.655, and 38.89 mg/L, respectively. Measured ${\mu}max$ by nonlinear regression of Monod equation was 10.63/day (or 0.443/hr), and this value was similar with above result. These parameters may be used to increase efficiency of pharmaceutical wastewater treatment and to determine amount of oxygen needed to removal BOD and dissolved oxygen in activated sludge process.

A Study on the high-flux MBR system using PTFE flat membrane and coagulant(Alum) for removal of phosphorus (PTFE재질의 평판형 분리막과 인제거를 위해 Alum주입을 적용한 고플럭스 MBR시스템에 관한 연구)

  • Lee, Eui-Jong;Kim, Kwan-Yeop;Kwon, Jin-Sub;Kim, Young-Hoon;Lee, Yong-Soo;Lee, Chang-Ha;Jeon, Min-Jung;Kim, Hyung-Soo;Kim, Jung-Rae;Jung, Jin-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.95-106
    • /
    • 2011
  • Even though MBR processes have many advantages such as high quality effluents, a small footprint and convenience for operation compared to conventional activated sludge processes, there are some shortcomings in terms of the cost and potential fouling incident that keeps MBR (Membrane bioreactor) processes from being widely applied. To reduce these problems, PTFE (Polytetrafluoroethylene) flat sheet membranes that have excellent permeability and durability were tested instead of PVDF (Polyvinylidene fluoride) membrane which is being used widely in water treatment. Low concentration of sodium hydroxide (NaOH) was also added into the membrane modules in order to prevent the membrane fouling as well as to provide the alkalinity. With conditions mentioned above, a pilot-scale MBR system based on the MLE (Modified Ludzack Ettinger) process was operated at flux of 40 $L/m^{2}/hr$ and over 15,000 mg/L MLSS concentration for about 8 months. And coagulant(alum) was added into the membrane tank to remove phosphorus. Although the more coagulant is added the more effectively phosphorus is removed, that can lead to fouling for a long operation(Ronseca et al.,2009). By the way there is a research that fouling grow up after stopping injection of coagulant(Holbrook, 2004). Stable operation of MBR systems was achieved without major chemical cleaning and the effluent quality was found to be good enough to comply with the treated waste water quality regulations of the Korea.

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

Water Digital Twin for High-tech Electronics Industrial Wastewater Treatment System (I): e-ASM Development and Digital Simulation Implementation (첨단 전자산업 폐수처리시설의 Water Digital Twin(I): e-ASM 모델 개발과 Digital Simulation 구현)

  • Shim, Yerim;Lee, Nahui;Jeong, Chanhyeok;Heo, SungKu;Kim, SangYoon;Nam, KiJeon;Yoo, ChangKyoo
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.63-78
    • /
    • 2022
  • Electronics industrial wastewater treatment facilities release organic wastewaters containing high concentrations of organic pollutants and more than 20 toxic non-biodegradable pollutants. One of the major challenges of the fourth industrial revolution era for the electronics industry is how to treat electronics industrial wastewater efficiently. Therefore, it is necessary to develop an electronics industrial wastewater modeling technique that can evaluate the removal efficiency of organic pollutants, such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorous (TP), and tetramethylammonium hydroxide (TMAH), by digital twinning an electronics industrial organic wastewater treatment facility in a cyber physical system (CPS). In this study, an electronics industrial wastewater activated sludge model (e-ASM) was developed based on the theoretical reaction rates for the removal mechanisms of electronics industrial wastewater considering the growth and decay of micro-organisms. The developed e-ASM can model complex biological removal mechanisms, such as the inhibition of nitrification micro-organisms by non-biodegradable organic pollutants including TMAH, as well as the oxidation, nitrification, and denitrification processes. The proposed e-ASM can be implemented as a Water Digital Twin for real electronics industrial wastewater treatment systems and be utilized for process modeling, effluent quality prediction, process selection, and design efficiency across varying influent characteristics on a CPS.

Effect of Air-flow on Enhanced Nutrient Removal and Simultaneous Nitrification/Denitrification in DMR Biofilm Process (DMR 생물막 공정에서 포기량에 따른 질산화 동시 탈질화 및 영양염류 제거특성)

  • Kim, Il-Kyu;Lee, Sang-Min;Lim, Kyeong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.992-998
    • /
    • 2008
  • Recently, a new concept for nitrogen removal that is simultaneous nitrification and denitrification(SND) has been studied for wastewater treatment process. The DMR(Daiho Microbic Revolution) process that used in this study consists of two suspended anoxic, anaerobic reactors and an aerobic biofilm reactor. The function of aerobic environment and the intensity of air flow rate(2.0, 1.0, 0.5, 0.4, 0.2 L/min) were studied in the biofilm reactor; also SND and nutrient removal efficiencies were investigated. Experimental results indicated that the change in air flow did not affect COD$_{Cr}$ removal significantly. Thus sustained at 93%. The lower the air flow rate, the higher T-N removal efficiency was attained(i.e.80% at 0.2 L/min). SND efficiency was 62, 65, 72 and 78% corresponding to each air flow rate. T-P removal was sensitive to aeration intensity and removal enhanced from 75% to 96% when the air flow rate was changed from 2.0 to 0.5 L/m; however second release occured in the clarifier at 0.2 L/min. Phosphorus content of activated sludge was 5.0%, as P releases and acetate uptake a ratio of 0.75 mg P/ mg HAc.

Evaluation of Greenhouse Gas Emissions from Animal Manure Treatment Systems with Life Cycle Assessment : A Case Study (전과정평가를 이용한 가축분뇨 처리시설의 온실가스 배출량 평가 : 사례 연구)

  • Park, K.H.;Choi, D.Y.;Cho, S.B.;Yang, S.H.;Hwang, O.H.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.sup
    • /
    • pp.1-6
    • /
    • 2011
  • Korean Government announced 'The Roadmap to realize a low carbon green society on year 2020' on July 12, 2011 in order to mitigate greenhouse gas (GHG) emissions. Non-energy category of Food, Agriculture, Forestry and Fishery (FAFF) should mitigate 1,349 kilo $CO_2$-equivalent ($CO_2$-eq.) tonnes which is 7.1% of Business-As-Usual on year 2020. The mitigation from animal manure treatment system (AMTS) comprises ca. 45% of the total mitigated amount of Non-energy category of FAFF. Hence, the precise evaluation of GHG emissions from AMTS is important to find effective mitigation measures. Life cycle assessment was used to evaluate GHG emissions from AMTS. The most GHG emitter was a composting/liquid fertilizer/activated sludge system (1,649.45 kg $CO_2$-eq./head/year) and the least GHG emitter was a activated liquid fertilizer system (1,024.46 kg $CO_2$-eq./head/year). Thermophilic oxic process showed the highest ratio (34.9%) of GHG emissions by the use of electricity to total GHG emissions from systems. Energy efficiency should be considered to mitigate GHG emissions from AMTS.

Nitrogen Removal Characteristic of Excreta Wastewater Using SBR and MBR Processes (SBR 및 MBR 공정을 이용한 분뇨폐수에서의 질소제거 특성)

  • Jung, Jin-Hee;Yoon, Young-Nae;Lee, Seul-Kee;Han, Young-Rip;Lee, Seung-Chul;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1485-1491
    • /
    • 2015
  • There are two treatment processes that are currently applied to ships are the biological treatment process using the activated sludge and the electrochemical treatment. However, neither of them are able to remove both nitrogen and phosphorus due to their limited ability to remove organic matters, which are main causes of the red tide. This study was conducted to identify the characteristics of nitrogen removal factors from manure wastewater by replacing the final settling tank in SBR (Sequencing Batch Reactor) process and applying immersion type hollow fiber membrane. SBR process is known to have an advantage of the least land requirement in special environment such as in ship and the immersion type hollow fiber membrane is more stable in water quality change. As the result, the average in the cases of DO (Dissolved Oxygen) is 2.9(0. 6~3.9) mg/L which was determined to be the denitrifying microorganism activity in anaerobic conditions. The average in the cases of ORP (Oxidation Reduction Potential) is 98.4~237.3 mV which was determined to be the termination of nitrification since the inflection point was formed on the ORP curve due to decrease in the stirring treatment after the aeration, same as in the cases of DO. Little or no variation in the pH was determined to have positive effect on the nitrification. T-N (Total Nitrigen) removal efficiencies of the finally treated water were 71.4%, 72.3% and 66.5% in relatively average figures, thus was not a distinct prominence. In being applied in ships in the future, the operating conditions and structure improvements are deemed necessary since the MEPC (Marine Environment Protection Committee). 227(64) ship sewage nitrogen is less than the standard of 20 Qi/Qe mg/L or the removal rate of 70%.

Technical Evaluation of MBR Process for the Wastewater Treatment of Beverage Fabrication Processes (음료수 제조 공정 폐수의 MBR 처리 기술 평가)

  • Jung, Cheol Joong;Park, Jong Min;Kim, Youn Kook
    • Membrane Journal
    • /
    • v.24 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • Manufacturing facility for non-alcoholic drink, the parts of the food industry, disposes wastewater which includes high organic concentration and low nitrogen, phosphorus concentration. For this kind of wastewater, the treatment plant consists mainly of aerobic reactor and chemical coagulation process. And sand-filter or activated carbon process is normally installed further. However, aerobic reactor must have long HRT to treat high concentration of organic contaminant included in this wastewater, so the large site area is required. And settling tank which is normally applied for wastewater treatment facility has some problems such as water quality degradation caused by the sludge spill. To solve these problems, we applied MBR system for the wastewater. And the MBR pilot plant was installed nearby the wastewater treatment facility of W food factory and operated during long term to evaluate treatment efficiency. This plant was operated about 3 months and than the result was 97% of organic removal rate on conditions of flow rate $20m^3/day$, HRT 29 hr, recycle 4Q. However, contaminant removal ratio of bio-reactor decreased and TMP of membrane increased rapidly on more conditions.

A Study on Removal of Organism and Nitrogen, Phosphorus in Wastewater Treatment Process Using Nitrifier Activated Reactor (질산화균 활성화조를 이용한 하수처리 공정에서의 유기물 및 질소, 인 제거에 관한 연구)

  • Dong, Young-tak;Seo, Dong-whan;Bae, Yu-jin;Park, Ju-seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.727-735
    • /
    • 2007
  • The use of water by cities is increasing owing to industrialization, the concentration of population, and the enhancement of the standard of living. Accordingly, the amount of waste water is also increasing, and the degree of pollution of the water system is rising. In order to solve this problem, it is necessary to remove organisms and suspended particles as well as the products of eutrophication such as nitrates and phosphates. This study developed a high-end treatment engineering solution with maximum efficiency and lower costs by researching and developing a advanced treatment engineering solution with the use of Biosorption. As a result, the study conducted a test with a $50m^3/day$ Pilot Scale Plant by developing treatment engineering so that only the secondary treatment satisfies the standard of water quality and which provided optimal treatment efficiency along with convenient maintenance and management. The removal of organisms, which has to be pursued first for realizing nitrification during the test period, was made in such a way that there would be no oxidation by microorganisms in the reactor while preparing oxygen as an inhibitor for the growth of microorganism in the course of moving toward the primary settling pond. The study introduced microorganisms in the endogeneous respiration stage to perform adhesion, absorption, and filtering by bringing them into contact with the inflowing water with the use of a sludge returning from the secondary settling pond. Also a test was conducted to determine how effective the microorganisms are as an inner source of carbon. The HRT(Hydraulic Retention Time) in the nitrification tank (aerobic tank) could be reduced to two hours or below, and the stable treatment efficiency of the process using the organisms absorbed in the NAR reactor as a source of carbon could be proven. Also, given that the anaerobic condition of the pre-treatment tank becomes basic in the area of phosphate discharge, it was found that there was excellent efficiency for the removal of phosphate when the pre-treatment tank induced the discharge of phosphate and the polishing reactor induced the uptake of phosphate. The removal efficiency was shown to be about 94.4% for $BOD_5$. 90.7% for $COD_{Cr}$ 84.3% for $COD_{Mn}$, 96.0% for SS, 77.3% for TN, and 96.0% for TP.

Study on the Performances and Microbial Community in the Biofilm Process for Treating Nonpoint Source Pollutants (비점오염물질 처리를 위한 생물막 공정의 운전 및 미생물 군집의 특성)

  • Choi, Gi-Choong;Park, Jeung-Jin;Kang, Du-Kee;Yu, Jae-Cheul;Byun, Im-Gyu;Shin, Hyun-Suk;Lee, Tae-Ho;Park, Tae-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.10
    • /
    • pp.1021-1027
    • /
    • 2008
  • In this study, biofilm process was introduced for treating nonpoint source pollutants. The ceramic media were provided for biofilm growth in the reactors. The packing ratio of ceramic media was 5% and 15(v/v)%, respectively. Thereafter, the reactors were operated intermittently with the different interevent periods such as 0, 5, 10 and 15 days, respectively. The removal efficiencies of COD and NH$_4{^+}$-N were investigated at the different operating conditions such as media packing ratio, temperature, and interevent period. Additionally, Polymerase chain reaction(PCR)-denaturing gel gradient electrophoresis(DGGE) and INT-dehydrogenase activity(DHA) test were conducted to observe the microbial community and activity in the biofilm. Consequently, the interevent period seemed to have no significant influence on the COD removal efficiency. COD was removed within 6$\sim$8 hours at 25$^{\circ}C$ and about 15 hours at 10$^{\circ}C$. DGGE profiles showed that the initial species of microorganisms were changed from seeded activated sludge into the microorganisms detected in sediments. INT-DHA test also showed that the activities of microorgnaisms were not decreased even in the 15 days of interevent period.