• Title/Summary/Keyword: Activated sludge

Search Result 786, Processing Time 0.029 seconds

A Study on the Field Application of Intermittently Aerated Activated Sludge Process for Water Reuse System (간헐포기 활성슬러지 중수처리공정의 현장적용 연구)

  • Seo, In-Seok;Kim, Byung-Goon;Park, Seung-Kook;Kwon, Sun-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.513-521
    • /
    • 2000
  • Intermittently aerated activated sludge process was applied as a water reuse process of $70m^3/day$ for the upgrade of organic, nitrogen and phosphorus removal efficiency and clarifier performance. After application of the intermittently aeration, removal efficiency of BOD, SS, T-N and T-P were achieved 95%, 90%, 80% and 60%, respectively. Removal efficiencies in intermittently aerated process were considerably increased. comparing to those of continuously aerated activated sludge process. Also sludge rising problem in clarifier was improved. Average concentration of supplied reusing water were BOD 5 mg/L, turbidity 4 NTU and after chlorination, residual chlorine 0.4 mg/L, coliform 0 MPN/100mL. Intermittently aerated activated sludge process could be one of the best alternative process for the retrofit of conventional activated sludge process for the removal of nutrient in water reuse system.

  • PDF

Effect of Chlorination for Bulking Control on the Organic Removal Activity of Activated Sludge Treating Dairy Wastewater (유가공 폐수의 활성슬러지 처리에서 벌킹 제어용 염소가 미생물의 유기물 분해 활성에 미치는 영향)

  • Nam Se-Yong;Choi Jin-Taek
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.96-101
    • /
    • 2006
  • Chlorination inhibition on the organic removal activity of activated sludge microorganism was investigated in this study. It is well known that chlorination improves the settleability of filamentous bulking sludge through the selective impediment of filamentous microorganisms. However, it is based on the declination of effluent water quality after actual chlorination in dairy wastewater treatment plant. In case of the activated sludge which was exposed in the suggested concentration of chlorine $7.5\;mgCl_2/gVSS/day$ for the filamentous bulking control, decrease of organic uptake rate of $4.9\~24.0\%$, and dentrification rate of $24.8\~30.3\%$ ware shown in comparison to the control group which was not reacted with chlorine. As a result of comparing floc size of activated sludge microorganism, the average of floc diameter in the chlorine exposed group was $150\;{\mu}m$, which displays $25\%$ decrease compared with the control group.

The Effect of HRT and SRT on Treatment Efficiency of Activated Sludge Process for Low Concentration Municipal Sewage (저농도 도시하수 처리를 위한 활성슬러지공정에서 HRT 및 SRT가 처리효율에 미치는 영향)

  • Whang, Gye Dae;Kim, Min Ho;Ko, Sae Bom
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.64-73
    • /
    • 1997
  • Most of the municipal wastewater treatment plants operated in Korea are designed for high concentrations municipal sewage. However, activated sludge process employed by municipal wastewater treatment plant is operated at low organic loading. The objective of this study was to determine optimum operating condition of activated sludge process for treatment of low concentration municipal sewage. Three bench scale activated sludge reactors were operated to investigate the effect of HRT and SRT on the COD and TSS removal efficiency. The average concentration of TSS, SCOD, SBOD and TKN in influent were 118mg/l, 61mg/l, 21mg/l, and 12mg/l, respectively. The activated sludge reactors operated with various HRT and SRT showed about 89-93% TSS removal efficiency. HRT and SRT does not affect the TSS removal efficiency of actvatied sludge process significantly. However, HRT affected the SCOD removal efficiency slightly. As the HRT decreases from 13hours to 3hours, the SCOD removal efficiency decreases from 67% to 56%. The average effluent TCOD concentration of the reactor operated with 3hours of HRT was approximatly 40-45mg/l. Kinetic coefficient yield (Yt) and decay coefficients(Kd) were 0.594-0.954 mgMLVSS/mgCOD and $0.0197-0.0317day^{-1}$, respectively. Low concentration municipal sewage can be treated with 3 hours of HRT without effluent quality deterioration and SRT does not affect the substrate removal efficiency at this operation condition.

  • PDF

Effects of Pressure and Dissolved Oxygen Concentration on the Activated Sludge (압력 및 용존산소 농도가 활성슬러지에 미치는 영향)

  • 양병수;신현무
    • Journal of Environmental Science International
    • /
    • v.4 no.3
    • /
    • pp.259-267
    • /
    • 1995
  • This study was conducted to evaluate the effects of pressure and dissolved oxygen concentration on the activated slut비e and to determine the optimum depth of deep shaft process. Some results from this study were summarized as follows. 1. It is considered that low sludge product in the activated sludge system maintaining high dissolved oxygen concentration is attributed to the increase of endogeneous respiration rate caused by the increase of aerobic zone in the sludge floe. 2. The increase of dissolved oxygen concentration does not affect to the increase of organic removal efficiency greatly and therefore the limiting factor is the substrate transfer into the inner part of floe. 3. The yield coefficient, Y is decreased in proportion to the increase of oxygen concentration. In this study, Y values arre ranged from 0.70 to 0.41 according to the variation of dissolved oxygen concentration from 18.0mg/$\ell$ to 258 mg/$\ell$. 4. The optimum depth of deep shaft process should be determined within the limits of non-toxicity to the microorganism and it is about loom in this study.

  • PDF

Domestic Sewage Treatment with a Successive System of Activated Sludge Process and Phytoplankton Cultivation

  • Hong, W.H.;Pack, M.Y.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1978.10a
    • /
    • pp.209.1-209
    • /
    • 1978
  • Treatment of domestic sewage discharged from big cafeteria kitchen, especially rice-washing water, was examined by the use of activated sludge process and phytoplankton cultivation. Only with a activated sludge process COD value decreased from around 1000 mg/ι to 100 mg/ι, but nutrients, such as nitrogen and phosphate could not be removed sufficiently phytoplankton cultivation in combination with a activate sludge process could decrease COD value down to 50 mg/ι and nutrients values were also reduced substantially. However, the initial concentration of 20 mg/ι in the rice-washing water could not be removed completely without addition of activated sludge as a nitrogen source.

  • PDF

Biological Treatment of Benzene by Activated Sludge (활성 Sludge에 의한 Benzene의 생물학적 처리)

  • 유재근;김정현;이형환
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.5
    • /
    • pp.374-378
    • /
    • 1988
  • Treatability and maximum no inhibitory effect concentration of benzene were measured in the synthetic wastewater medium by the activated sludge in the continuous activated sludge reactor. The maximum no inhibitory effect concentration was 1, 600mg per liter. Benzene concentration over 500mg per liter inhibited the growth of microorganims by the measurment of E/BOD, and the treatability of benzene at the maximum no inhibitory effect concentration was over 95%.

  • PDF

Studies on the Wastewater of General Hospital and It에s Treatment -Effects of Disinfectants on Activated Sludge Process- (病院廢水의 特性과 處理에 關한 硏究 -消毒劑가 활성스러지법에 미치는 영향-)

  • Ra, Kyu Hwan;Ok, Chi Sang
    • Journal of Environmental Health Sciences
    • /
    • v.10 no.1
    • /
    • pp.13-20
    • /
    • 1984
  • The hospital wastewaters have to be so disposed as to prevent disease and to protect water resources from hazardous substances disinfectants, medicines, and chemicals. Polyvinylpyrrolidone-iodine complex (povidone-iodine) is widely used in the hospital as one of disinfectants. This study was carried out to manifest the effect of disinfectants in growth of activated sludge in treatment of the hospital wastewater by the activated sludge process. The results are as follow. 1. An average water quality of the hospital wastewater showed 7.2 in pH, 3.2 ppm in DO, 293.3 ppm in SS, 96.0 ppm in BOD, 151.1 ppm in COD, 0.4 ppm in povidone-iodine, 0.5 ppm in phenols, 5.4 ppm in surfactants, 1.6 ppm in o-phosphate, 4.6 ppm in $NH_3-N, 249\times 10^4$ counts/100 ml in coliform group organisms, and $1,369\times 10^2$ counts/ml in general counts of bacteria. And wastewater amounts discharged per bed was calculated 70 l/d/bed. 2. In batch culture activated sludge process, each of cresol and povidone-iodine was not effected in less than 0.1 ppm concentration, but the more concentration, the more inhibit the growth rate of activated sludge. In the mixture of two disinfectants, the growth was more inhibited the effect of single disinfectants. So that this reaction is considered as addition effect of two disinfectants. 3. The removal rates of the disinfectants-by continuous culture activated sludge process were 77.6% in 0.4 ppm povidone-iodine, and in BOD was 85.6%. 4. It is desirable that the hospital wastewater is planed in order to be discharged to two system separately, sewer from life system and wastewater from medical system. From those results, it has been concluded that the hospital wastewater has to be treated safely by the activated sludge process.

  • PDF

Isolation, Physiological Characterization of Bacteriophages from Enhanced Biological Phosphorus Removal Activated Sludge and Their Putative Role

  • Lee, Sang-Hyon;Satoh, Hiroyasu;Katayama, Hiroyuki;Mino, Takashi
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.730-736
    • /
    • 2004
  • This study aims at characterizing the bacteriophages isolated from activated sludge performing enhanced biological phosphorous removal (EBPR) to understand the interactions between the phage-host system and bacterial community. Sixteen bacterial isolates (E1-E16) were isolated as host bacterial strains from EBPR activated sludge for phage isolation. Forty bacteriophages based on their plaque sizes (2 plaques on E4, 4 on E8, 11 on E10, 5 on E14, 18 on E16) were obtained from filtered supernatant of the EBPR activated sludge. Each bacteriophage did not make any plaque on bacterial strains tested in this study except on its own host bacterial strain, respectively, indicating that the bacteriophages are with narrow host specificity. However, fourteen of the forty bacteriophages obtained in this study lost their virulent ability even on their own host bacteria. All of the lytic phages showed similar one-step growth patterns and had long latent period (about 9 hours) to reproduce their phage particles in their host bacterial cells. On the other hand, their probable burst sizes (6 to 48 per host cell) were large enough to actively lyse their host bacterial cells. Therefore, it could be implied that bacteriophages are also important members of the microbial community in EBPR activated sludge, and lytic phages directly decrease the population size of their host bacterial groups in EBPR activated sludge by lysis.

A Study on the Factors Affecting Pb^{2+}$ Removal by Activated Sludge (활성슬러지를 이용한 납 이온 제거에 영향을 미치는 인자에 대한 연구)

  • Kim, Dong-Seog;Kim, Mi-Kyung;Suh, Jung-Ho
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.559-564
    • /
    • 1998
  • The effects of temperature, initial $Pb^{2+}$concentration and initial sludge concentration on the initial $Pb^{2+}$ removal rate and maximal $Pb^{2+}$removal amounts in activated sludge, respectively, were investigated. The removal of $Pb^{2+}$ in activated sludge was proved to be temperature-dependent process. The initial $Pb^{2+}$ removal rate increased from 187.5 to 261.4 mg $Pb^{2+}$/g sludge dry weight min, in response to the promoted temperature from 1$0^{\circ}C$ to 6$0^{\circ}C$, while the maximal $Pb^{2+}$removal amount (78.5 mg $Pb^{2+}$/g sludge dry weight) occurred at 30t . As the initial $Pb^{2+}$concentration increased from 36 to 228 mg $Pb^{2+}$/L at the constant temperature of 30C and initial sludge concentration of 1.5 g sludge dry weight/L, the time to reach an equilibrium state was almost independent of the initial $Pb^{2+}$concentration and the equilibrium $Pb^{2+}$/removal amount was increased Irom 41.9 to 73.6 mg $Pb^{2+}$/g sludge dry weight. On the contrary, the equilbrium $Pb^{2+}$ emoval amount was decreased from 87.7 to 65.3 mg $Pb^{2+}$/g sludge dry weight as the in- crease of initial sludge concentration from 0.22 to 1.76 g sludge dry weight/L.

  • PDF

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF