• Title/Summary/Keyword: Activated protein C (APC)

Search Result 8, Processing Time 0.028 seconds

Effect of Activated Protein C (APC) on Apoptosis of Cancer Cells (종양세포의 사멸에 있어서의 activated protein C의 효과)

  • Min, Kyoung-Jin;Bae, Jong-Sup;Kwon, Taeg-Kyu
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.697-701
    • /
    • 2012
  • Activated protein C (APC) has an anticoagulant effect and a non-hemostatic effect such as regulation of cell metastasis and modulation of inflammation. In this study, we investigated whether APC could modulate apoptosis in cancer cells. Tumor necrosis factor (TNF)-${\alpha}$, cyclohexamide, and FAS markedly induced apoptosis in human renal carcinoma Caki cells. When Caki cells were pretreated with APC, the percentage of death receptor-induced apoptosis did not change. Furthermore, we checked the effect of APC on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in human glioma T98G and human breast carcinoma MDA231 cells. APC also had no effect on TRAIL-induced apoptosis in both cell lines. However, pretreatment with APC inhibited combination treatment (kahweol plus TRAIL and kahweol plus melatonin)-induced apoptosis and PARP cleavage in Caki cells. Taken together, our results suggest that APC can modulate anti-cancer therapeutic efficiency.

Effect of Soluble EPCR on the Anti-Inflammatory Effects by Activated Protein C (수용성 EPCR에 의한 활성화된 단백질 C의 항염증 작용에 관한 연구)

  • Bae, Jong-Sup;Park, Moon-Ki;Park, Sang-Wook
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.501-505
    • /
    • 2009
  • In this study, we evaluated the effect of soluble EPCR(Soluble Endothelial Protein C Receptor, sEPCR) on the anti-inflammatory activities by activated protein C(APC) in endothelium. We demonstrated that sEPCR inhibited the barrier protective activity, the inhibition of neutrophils adhesion toward endothelial cells and the inhibition of transendothelial migration by APC in endothelial cells. Interestingly, sEPCR also blocked the mechanism by which APC inhibited the expression of cell adhesion molecules(CAM) by TNF-alpha in endothelial cells. These results suggested that the anti-inflammatory activities of APC was inhibited by sEPCR which blocked the binding motifs of Gla domain of APC to membrane bound EPCR. This finding will provide the important evidence in the development of new medicine for the treatment of severe sepsis and inflammatory diseases and good clue for understanding unknown mechanisms by which APC showed the anti-inflammatory activities in endothelium.

The Ligand Occupancy of Endothelial Protein C Receptor Switches the Signaling Specificity of Thrombin from a Disruptive to a Protective Response in Endothelial Cells

  • Bae, Jong-Sup;Kim, Yong-Ung;Park, Moon-Ki
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.538-544
    • /
    • 2008
  • Activated protein C (APC) is thought to exert antiinflammatory activities through the endothelial protein C receptor (EPCR)-dependent cleavage of protease activated receptor 1 (PAR-1) in endothelial cells. Since thrombin cleaves PAR-1 with $\sim$3-4-orders of magnitude higher efficiency, and PAR-1 is a target for proinflammatory activities of thrombin, it is not understood how APC can elicit protective responses through the cleavage of PAR-1. In this study, we demonstrate that EPCR is associated with caveolin-1 in endothelial lipid rafts, but its occupancy by protein C leads to its dissociation from caveolin-1 and subsequent recruitment of PAR-1 to protective signaling pathways through the coupling of PAR-1 to Gi-protein. When EPCR is bound by protein C, the PAR-1-dependent protective response in endothelial cells can be mediated by either thrombin or APC. These results provide a new paradigm for understanding the mechanism through which PAR-1 and EPCR participate in cellular signaling events in endothelial cells.

  • PDF

Mad2B forms a complex with Cdc20, Cdc27, Rev3 and Rev1 in response to cisplatin-induced DNA damage

  • Ju Hwan Kim;Rajnikant Patel
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.427-436
    • /
    • 2023
  • Mitotic arrest deficient 2 like 2 (Mad2L2, also known as Mad2B), the human homologue of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares high sequence homology with Mad2, the mitotic checkpoint protein. Previously, we demonstrated the involvement of Mad2B in the cisplatin-induced DNA damage response. In this study, we extend our findings to show that Mad2B is recruited to sites of DNA damage in human cancer cells in response to cisplatin treatment. We found that in undamaged cells, Mad2B exists in a complex with Polζ-Rev1 and the APC/C subunit Cdc27. Following cisplatin-induced DNA damage, we observed an increase in the recruitment of Mad2B and Cdc20 (the activators of the APC/C), to the complex. The involvement of Mad2B-Cdc20-APC/C during DNA damage has not been reported before and suggests that the APC/C is activated following cisplatin-induced DNA damage. Using an in vitro ubiquitination assay, our data confirmed Mad2B-dependent activation of APC/C in cisplatin-treated cells. Mad2B may act as an accelerator for APC/C activation during DNA damage response. Our data strongly suggest a role for Mad2B-APC/C-Cdc20 in the ubiquitination of proteins involved in the DNA damage response.

Inactivation of Mad2B Enhances Apoptosis in Human Cervical Cancer Cell Line upon Cisplatin-Induced DNA Damage

  • Ju Hwan Kim;Hak Rim Kim;Rajnikant Patel
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.340-349
    • /
    • 2023
  • Mad2B (Mad2L2), the human homolog of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares sequence similarity with the mitotic checkpoint protein Mad2A. Previous studies on Mad2B have concluded that it is a mitotic checkpoint protein that functions by inhibiting the anaphase-promoting complex/cyclosome (APC/C). Here, we demonstrate that Mad2B is activated in response to cisplatin-induced DNA damage. Mad2B co-localizes at nuclear foci with DNA damage markers, such as proliferating cell nuclear antigen and gamma histone H2AX (γ-H2AX), following cisplatin-induced DNA damage. However, unlike Mad2A, the binding of Mad2B to Cdc20 does not inhibit the activity of APC/C in vitro. In contrast to Mad2A, Mad2B does not localize to kinetochores or binds to Cdc20 in spindle assembly checkpoint-activated cells. Loss of the Mad2B protein leads to damaged nuclei following cisplatin-induced DNA damage. Mad2B/Rev7 depletion causes the accumulation of damaged nuclei, thereby accelerating apoptosis in human cancer cells in response to cisplatin-induced DNA damage. Therefore, our results suggest that Mad2B may be a critical modulator of DNA damage response.

Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand

  • Bae, Jong-Sup;Rezaie, Alireza R.
    • BMB Reports
    • /
    • v.46 no.11
    • /
    • pp.544-549
    • /
    • 2013
  • High mobility group box 1 (HMGB1) is involved in the pathogenesis of vascular diseases. Unlike activated protein C (APC), the activation of PAR-1 by thrombin is known to elicit proinflammatory responses. To determine whether the occupancy of EPCR by the Gla-domain of APC is responsible for the PAR-1-dependent antiinflammatory activity of the protease, we pretreated HUVECs with the PC zymogen and then activated PAR-1 with thrombin. It was found that thrombin downregulates the HMGB1-mediated induction of both TNF-${\alpha}$ and IL-6 and inhibits the activation of both p38 MAPK and NF-${\kappa}B$ in HUVECs pretreated with PC. Furthermore, thrombin inhibited HMGB1-mediated hyperpermeability and leukocyte adhesion/migration by inhibiting the expression of cell adhesion molecules in HUVECs if EPCR was occupied. Collectively, these results suggest the concept that thrombin can initiate proinflammatory responses in vascular endothelial cells through the activation of PAR-1 may not hold true for normal vessels expressing EPCR under in vivo conditions.

Functional Characterization of the Madlp, a Spindle Checkpoint Protein in Fission Yeast

  • Kim, In-Gyu;Rhee, Dong-Keun;Lee, Hee-Cheul;Lee, Joo;Kim, Hyong-Bai
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.694-700
    • /
    • 2005
  • Defects in the mitotic spindle or in the attachment of chromosomes to the spindle are believed to release an activated form of spindle checkpoint complex that inhibits APC-dependent ubiquitination and subsequently arrests the cell cycle at metaphase. When the spindle assembly is disrupted, the fission yeast mitotic arrest deficient (mad) mutants fail to arrest and rapidly lose viability. To enhance our understanding of the molecular mechanisms for the pathway of checkpoint function, the functional characterizations of Mad 1 p from Schizosaccharomyces pombe involved in this process have been carried out. Yeast two-hybrid and various deletion analyses of S. pombe Mad1 p reveal that the C terminus of Mad1p is critical for the binding of Mad2p and maintenance of Mad 1 p-Mad2p interaction. In addition, it was found. that the Mad1p region (residues 206-356) is essential for Mad1p-other checkpoint components. Mad1p truncating this region is sufficient to bind Mad2p but abolishes the checkpoint function, indicating that the checkpoint function is necessary for interaction of Mad 1 p-other checkpoint components. The possible functions of S. pombe Mad1p at the cell cycle checkpoint are discussed.

Role of Immune Response to Type II Collagen in the Pathogenesis of Rheumatoid Arthritis (류마티스 관절염 병인에서 제2형 콜라겐에 대한 면역반응의 역할)

  • Jung, Young Ok;Hong, Seung-Jae;Kim, Ho-Youn
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Type II collagen (CII), major component of hyaline cartilage, has been considered as an auto-antigen in rheumatoid arthritis (RA). However, the clinical and biological significances with regard to the CII autoimmunity need to be clarified in human RA. The presence of antibodies to CII has been identified in sera, synovial fluid, and cartilage of patients with RA. In our study, the increased titer of IgG anti-CII in sera was well correlated with C-reactive protein, suggesting that this antibody may reflect the inflammatory status of RA. The titer of anti-CII antibodies (anti-CII Abs) tended to be higher in early stages of diseases. In our extending study, among 997 patients with RA, 269 (27.0%) were positive for circulatory IgG antibody to CII, those levels were fluctuated over time. It is hard to assess the significant amount of T cell responses to CII and CII (255~274) in RA. By using a sensitive method of antigen specific mixed lymphocyte culture, we can detect the presence of CII-reactive T cells in peripheral blood mononuclear cells of RA patients. Sixty seven (46.9%) of 143 patients showed positive CII reactive T cell responses to CII or CII (255~274). The frequencies of CII reactive T cells were more prominent in inflamed synovial fluid (SF) than in peripheral blood. These T cells could be clonally expanded after consecutive stimulation of CII with feeding of autologous irradiated antigen presenting cells (APC). Moreover, the production of Th1-related cytokine, such as IFN-${\gamma}$, was strongly up-regulated by CII reactive T cells. These data suggest that T cells responding to CII, which are probably presenting the IFN-${\gamma}$ producing cells, may play an important role in the perpetuation of inflammatory process in RA. To evaluate the effector function of CII reactive T cells, we investigated the effect of CII reactive T cells and fibroblasts-like synoviocytes (FLS) interaction on the production of pro-inflammatory cytokines. When the CII reactive T cells were co-cultured with FLS, the production of IL-15 and TNF-${\alpha}$ from FLS were significantly increased (2 to 3 fold increase) and this increase was clearly presented in accord to the expansion of CII reactive T cells. In addition, the production of IFN-${\gamma}$ and IL-17, T cell derived cytokines, were also increased by the co-incubation of CII reactive T cells with FLS. We also examined the impact of CII reactive T cells on chemokines production. When FLS were co-cultured with CII stimulated T cells, the production of IL-8, MCP-1, and MIP-1${\alpha}$ were significantly enhanced. The increased production of these chemokines was strongly correlated with increase the frequency of CII reactive T cells. Conclusively, immune response to CII was frequently found in RA. Activated T cells in response to CII contributed to increase the production of proinflammatory cytokines and chemokines, which were critical for inflammatory responses in RA. The interaction of CII-reactive T cells with FLS further augmented this phenomenon. Taken together, our recent studies have suggested that autoimmunity to CII could play a crucial role not only in the initiation but amplification/perpetuation of inflammatory process in human RA.