Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.11.056

Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand  

Bae, Jong-Sup (College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University)
Rezaie, Alireza R. (Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine)
Publication Information
BMB Reports / v.46, no.11, 2013 , pp. 544-549 More about this Journal
Abstract
High mobility group box 1 (HMGB1) is involved in the pathogenesis of vascular diseases. Unlike activated protein C (APC), the activation of PAR-1 by thrombin is known to elicit proinflammatory responses. To determine whether the occupancy of EPCR by the Gla-domain of APC is responsible for the PAR-1-dependent antiinflammatory activity of the protease, we pretreated HUVECs with the PC zymogen and then activated PAR-1 with thrombin. It was found that thrombin downregulates the HMGB1-mediated induction of both TNF-${\alpha}$ and IL-6 and inhibits the activation of both p38 MAPK and NF-${\kappa}B$ in HUVECs pretreated with PC. Furthermore, thrombin inhibited HMGB1-mediated hyperpermeability and leukocyte adhesion/migration by inhibiting the expression of cell adhesion molecules in HUVECs if EPCR was occupied. Collectively, these results suggest the concept that thrombin can initiate proinflammatory responses in vascular endothelial cells through the activation of PAR-1 may not hold true for normal vessels expressing EPCR under in vivo conditions.
Keywords
EPCR; HMGB1; PAR-1; Protein C; Thrombin;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Andersson, U., Wang, H., Palmblad, K., Aveberger, A. C., Bloom, O., Erlandsson-Harris, H., Janson, A., Kokkola, R., Zhang, M., Yang, H. and Tracey, K. J. (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 192, 565-570.   DOI   ScienceOn
2 Park, J. S., Arcaroli, J., Yum, H. K., Yang, H., Wang, H., Yang, K. Y., Choe, K. H., Strassheim, D., Pitts, T. M., Tracey, K. J. and Abraham, E. (2003) Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am. J. Physiol. Cell Physiol. 284, C870-879.   DOI   ScienceOn
3 Javaid, K., Rahman, A., Anwar, K. N., Frey, R. S., Minshall, R. D. and Malik, A. B. (2003) Tumor necrosis factor-alpha induces early-onset endothelial adhesivity by protein kinase Czeta-dependent activation of intercellular adhesion molecule-1. Circ. Res. 92, 1089-1097.   DOI   ScienceOn
4 Lockyer, J. M., Colladay, J. S., Alperin-Lea, W. L., Hammond, T. and Buda, A. J. (1998) Inhibition of nuclear factor-kappaB-mediated adhesion molecule expression in human endothelial cells. Circ. Res. 82, 314-320.   DOI   ScienceOn
5 Yamagami, H., Yamagami, S., Inoki, T., Amano, S. and Miyata, K. (2003) The effects of proinflammatory cytokines on cytokine-chemokine gene expression profiles in the human corneal endothelium. Invest. Ophthalmol. Vis. Sci. 44, 514-520.   DOI   ScienceOn
6 Zeuke, S., Ulmer, A. J., Kusumoto, S., Katus, H. A. and Heine, H. (2002) TLR4-mediated inflammatory activation of human coronary artery endothelial cells by LPS. Cardiovasc. Res. 56, 126-134.   DOI   ScienceOn
7 Taylor, F. B. Jr., Chang, A., Hinshaw, L. B., Esmon, C. T., Archer, L. T. and Beller, B. K. (1984) A model for thrombin protection against endotoxin. Thromb. Res. 36, 177-185.   DOI   ScienceOn
8 Scaffidi, P., Misteli, T. and Bianchi, M. E. (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191-195.   DOI   ScienceOn
9 Wang, H., Bloom, O., Zhang, M., Vishnubhakat, J. M., Ombrellino, M., Che, J., Frazier, A., Yang, H., Ivanova, S., Borovikova, L., Manogue, K. R., Faist, E., Abraham, E., Andersson, J., Andersson, U., Molina, P. E., Abumrad, N. N., Sama, A. and Tracey, K. J. (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285, 248-251.   DOI   ScienceOn
10 Wang, H., Ward, M. F. and Sama, A. E. (2009) Novel HMGB1-inhibiting therapeutic agents for experimental sepsis. Shock 32, 348-357.   DOI   ScienceOn
11 Yang, H., Ochani, M., Li, J., Qiang, X., Tanovic, M., Harris, H. E., Susarla, S. M., Ulloa, L., Wang, H., DiRaimo, R., Czura, C. J., Roth, J., Warren, H. S., Fink, M. P., Fenton, M. J., Andersson, U. and Tracey, K. J. (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl. Acad. Sci. U.S.A. 101, 296-301.   DOI   ScienceOn
12 Nightingale, K., Dimitrov, S., Reeves, R. and Wolffe, A. P. (1996) Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin. EMBO J. 15, 548-561.
13 Bae, J. S. (2012) Role of high mobility group box 1 in inflammatory disease: Focus on sepsis. Arch. Pharm. Res. 35, 1511-1523.   DOI   ScienceOn
14 Park, J. S., Svetkauskaite, D., He, Q., Kim, J. Y., Strassheim, D., Ishizaka, A. and Abraham, E. (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem. 279, 7370-7377.   DOI   ScienceOn
15 Mann, K. G., Jenny, R. J. and Krishnaswamy, S. (1988) Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Annu. Rev. Biochem. 57, 915-956.   DOI   ScienceOn
16 Coughlin, S. R. (2000) Thrombin signalling and protease-activated receptors. Nature 407, 258-264.   DOI   ScienceOn
17 Macfarlane, S. R., Seatter, M. J., Kanke, T., Hunter, G. D. and Plevin, R. (2001) Proteinase-activated receptors. Pharmacol. Rev. 53, 245-282.
18 Ossovskaya, V. S. and Bunnett, N. W. (2004) Protease-activated receptors: contribution to physiology and disease. Physiol. Rev. 84, 579-621.   DOI   ScienceOn
19 Steinhoff, M., Buddenkotte, J., Shpacovitch, V., Rattenholl, A., Moormann, C., Vergnolle, N., Luger, T. A. and Hollenberg, M. D. (2005) Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr. Rev. 26, 1-43.
20 Coughlin, S. R. (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J. Thromb. Haemost. 3, 1800-1814.   DOI   ScienceOn
21 Finigan, J. H., Dudek, S. M., Singleton, P. A., Chiang, E. T., Jacobson, J. R., Camp, S. M., Ye, S. Q. and Garcia, J. G. (2005) Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J. Biol. Chem. 280, 17286-17293.   DOI   ScienceOn
22 Feistritzer, C. and Riewald, M. (2005) Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 105, 3178-3184.   DOI   ScienceOn
23 Mosnier, L. O., Zlokovic, B. V. and Griffin, J. H. (2007) The cytoprotective protein C pathway. Blood 109, 3161-3172.   DOI   ScienceOn
24 Regan, L. M., Mollica, J. S., Rezaie, A. R. and Esmon, C. T. (1997) The interaction between the endothelial cell protein C receptor and protein C is dictated by the gamma-carboxyglutamic acid domain of protein C. J. Biol. Chem. 272, 26279-26284.   DOI   ScienceOn
25 Bae, J. S., Yang, L. and Rezaie, A. R. (2007) Receptors of the protein C activation and activated protein C signaling pathways are colocalized in lipid rafts of endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 104, 2867-2872.   DOI   ScienceOn
26 Bae, J. S., Yang, L., Manithody, C. and Rezaie, A. R. (2007) The ligand occupancy of endothelial protein C receptor switches the protease-activated receptor 1-dependent signaling specificity of thrombin from a permeability-enhancing to a barrier-protective response in endothelial cells. Blood 110, 3909-3916.   DOI   ScienceOn
27 El Gazzar, M. (2007) HMGB1 modulates inflammatory responses in LPS-activated macrophages. Inflamm. Res. 56, 162-167.   DOI
28 Mullins, G. E., Sunden-Cullberg, J., Johansson, A. S., Rouhiainen, A., Erlandsson-Harris, H., Yang, H., Tracey, K. J., Rauvala, H., Palmblad, J., Andersson, J. and Treutiger, C. J. (2004) Activation of human umbilical vein endothelial cells leads to relocation and release of high-mobility group box chromosomal protein 1. Scand. J. Immunol. 60, 566-573.   DOI   ScienceOn
29 Bae, J. S. and Rezaie, A. R. (2011) Activated protein C inhibits high mobility group box 1 signaling in endothelial cells. Blood 118, 3952-3959.   DOI   ScienceOn
30 Chen, G., Li, J., Ochani, M., Rendon-Mitchell, B., Qiang, X., Susarla, S., Ulloa, L., Yang, H., Fan, S., Goyert, S. M., Wang, P., Tracey, K. J., Sama, A. E. and Wang, H. (2004) Bacterial endotoxin stimulates macrophages to release HMGB1 partly through CD14- and TNF-dependent mechanisms. J. Leukoc. Biol. 76, 994-1001.   DOI   ScienceOn
31 Bae, J. S. and Rezaie, A. R. (2008) Protease activated receptor 1 (PAR-1) activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand. Thromb. Haemost. 100, 101-109.
32 Bae, J. S. and Rezaie, A. R. (2009) Thrombin inhibits nuclear factor kappaB and RhoA pathways in cytokine-stimulated vascular endothelial cells when EPCR is occupied by protein C. Thromb. Haemost. 101, 513-520.
33 Bae, J. S. and Rezaie, A. R. (2010) Thrombin and activated protein C inhibit the expression of secretory group IIA phospholipase A(2) in the TNF-alpha-activated endothelial cells by EPCR and PAR-1 dependent mechanisms. Thromb. Res. 125, e9-e15.   DOI   ScienceOn
34 Bae, J. S. and Rezaie, A. R. (2010) Thrombin upregulates the angiopoietin-Tie2 Axis: endothelial protein C receptor occupancy prevents the thrombin mobilization of angiopoietin 2 and P-selectin from Weibel-Palade bodies. J. Thromb. Haemost. 8, 1107-1115.
35 Bae, J. S. (2012) Role of HMGB1 in inflammatory disease: focus on sepsis. Arch. Pharm. Res. 35, 1511-1523.   DOI   ScienceOn
36 Sama, A. E., D'Amore, J., Ward, M. F., Chen, G. and Wang, H. (2004) Bench to bedside: HMGB1-a novel proinflammatory cytokine and potential therapeutic target for septic patients in the emergency department. Acad. Emerg. Med. 11, 867-873.
37 Wolfson, R. K., Chiang, E. T. and Garcia, J. G. (2011) HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption. Microvasc. Res. 81, 189-197.   DOI   ScienceOn
38 Yang, H., Wang, H., Czura, C. J. and Tracey, K. J. (2005) The cytokine activity of HMGB1. J. Leukoc. Biol. 78, 1-8.   DOI   ScienceOn
39 Qin, Y. H., Dai, S. M., Tang, G. S., Zhang, J., Ren, D., Wang, Z. W. and Shen, Q. (2009) HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products. J. Immunol. 183, 6244-6250.   DOI   ScienceOn
40 Sun, C., Liang, C., Ren, Y., Zhen, Y., He, Z., Wang, H., Tan, H., Pan, X. and Wu, Z. (2009) Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic. Res. Cardiol. 104, 42-49.   DOI
41 Treutiger, C. J., Mullins, G. E., Johansson, A. S., Rouhiainen, A., Rauvala, H. M., Erlandsson-Harris, H., Andersson, U., Yang, H., Tracey, K. J., Andersson, J. and Palmblad, J. E. (2003) High mobility group 1 B-box mediates activation of human endothelium. J. Intern. Med. 254, 375-385.   DOI   ScienceOn
42 Fiuza, C., Bustin, M., Talwar, S., Tropea, M., Gerstenberger, E., Shelhamer, J. H. and Suffredini, A. F. (2003) Inflammationpromoting activity of HMGB1 on human microvascular endothelial cells. Blood 101, 2652-2660.   DOI   ScienceOn