• Title/Summary/Keyword: Activated dynamics

Search Result 79, Processing Time 0.027 seconds

Analysis on Interaction of Regular Waves and a Circular Column Structure (전산유체역학을 이용한 규칙파와 원형 기둥 구조물의 상호작용 해석)

  • Song, Seongjin;Park, Sunho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.2
    • /
    • pp.63-75
    • /
    • 2017
  • In offshore environment, an accurate estimation of a wave-structure interaction has been an important issue for safe and cost effective design of fixed and floating offshore structures exposed to a harsh environment. In this study, a wave-structure interaction around a circular column was investigated with regular waves. To simulate 3D two-phase flow, open source computational fluid dynamics libraries, called OpenFOAM, were used. Wave generation and absorption in the wave tank were activated by the relaxation method, which implemented in a source term. To validate the numerical methods, generated Stokes 2nd-order wave profiles were compared with the analytic solution with deep water condition. From the validation test, grid longitudinal and vertical sizes for wave length and amplitude were selected. The simulated wave run-up and wave loads on the circular column were studied and compared with existing experimental data.

Development of a Cooling and Heating System for Greenhouse using Geothermal Energy (지열을 이용한 온실용 냉난방시스템 개발)

  • Lee Yong-Beom;Cho Seong-In;Lee Jae-Han;Kim Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.688-692
    • /
    • 2005
  • Importance of substitute energy has been increasing due to environmental issues and lack of fossil fuels. In addition, heating cost that occupies from 30 to $40\%$ of the total production cost in Korean protected cultivation needs to be reduced for profitability and global competition. But, studying on substitute energy to solve these problems has not been activated for Korean protected cultivation. Therefore, this study was conducted to develop a geothermal heat pump system for cool ing and heat ing of greenhouses at a lower cost than conventional hot air heater and air conditioner. Fundamental test of heat transfer characteristics in soil was conducted by computer simulation and controlled tests for its verification. Based on the results of the theoretical and empirical investigations, an optimum heat pump system was developed and the performance was evaluated for practical use in a greenhouse at the Pusan Horticultural Experiment Station. The system was compared with a conventional hot air heating system through a cucumber growing test and economic feasibility analysis. Results of the application test of the geothermal heat pump showed that with an initial setting of $15^{\circ}C$ the inside temperature of the greenhouse could be maintained between 15 and $17^{\circ}C$. Results of the cucumber growing test showed that there were no significant differences in average height, leaf length, leaf width, number of nods, leaf area, dry weight and yield between the plots wi th the geothermal heat pump system and a conventional hot air heater. Economic feasibility analysis indicated that the variable cost of the hot air heater could be saved $81.2\%$ using the geothermal heat pump system. It was concluded that the geothermal heat pump system might be a pertinent heating and cooling system for greenhouses because of the low operating cost and the use of environment-friendly geothermal energy.

  • PDF

Numerical Study on the Thermal Environment of a Natural Light Based Multi-layered Plant Factory (자연광 기반 적층형 식물공장의 열환경에 대한 수치해석 연구)

  • Park, Dong Yoon;Jang, Seong-Teak;Chang, Seong-Ju
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.43-50
    • /
    • 2013
  • Recent researches on plant factory system deal with the convergence of lighting technology, agricultural technology inclusive to the high-tech industries worldwide in order to respond to the decreasing crop harvest due to global warming and abnormal weather phenomena. However, the fundamental performance standard is not currently being introduced in the case of plants factory and its commercialization is not activated because of high initial investment and operating cost. Large portion of the initial investment and operating cost of a plant factory is ascribed to artificial light sources and thermal control facilities, therefore, innovation should be provided in order to improve the economics of the plant factory. As an alternative, new plant factory could harness solar thermal and geothermal systems for heating, cooling and ventilation. In this study, a natural light dependent multi-layer plant factory's thermal environment was analyzed with two-dimensional numerical methods to elicit efficient operation conditions for optimized internal physical environment. Depending on the supply air temperature and airflow rate introduced in the facility, the temperature changes around the crops was interpreted. Since the air supplied into the plant factory does not stay long enough, the ambient temperature predicted around the plating trays was not significantly different from that of the supplied air. However, the changes of airflow rate and air flow pattern could cause difference to the temperature around the planting trays. Increasing the amount of time of air staying around the planting trays could improve energy performance in case the thermal environment of a natural light based multi-layer plant factory is considered.

Family Life Education for The Actualization Family Welfare - Focus on Recipients of Family Welfare Service - (가정복지 실현을 위한 가정생활교육 확산 기초연구 - 가정복지서비스 수혜 가정을 중심으로 -)

  • Park Meesok
    • Journal of Family Resource Management and Policy Review
    • /
    • v.9 no.1
    • /
    • pp.75-93
    • /
    • 2005
  • It was quite an achievement to actualize family welfare, announcing' Healthy Family Basic Acts(2004)', which enabled to pursue comprehensive welfare policy including family life as a unit. This has enhanced family function, converting into consolidated family-centered service system, creating a new paradigm. The family life education must be spreaded and activated in the way of family welfare service, as to improve the quality of life, while reducing social problems regarding to the boundary of family. So This study aims at investigating the level of aspiration out from the family life education and the fact-revealing of training program within the family life. To examine these matters, 356 married women living in Seoul were selected. The results are as follows family life education and the training program each other showed little relevance that merely $45{\%}$ attended the program. Life planning program for Elderly was mostly asked in the research of the degree of family life education program. Besides, many of them demanded for the family care program for those who have divorced, remarried or adopted the child, showing their active will to solve them which have been dealt quite privately. Family life education is dealing with the current problem solving and future life planning. In this regard, it is strongly needed to experience and learn the dynamics of family life for lifetimes. Systemic family life education must be accomplished to solve, prevent and to cope with family problems.

  • PDF

A Study on the Transition of Work-Family Reconciliation Policy and Gender Regime -Focusing on Recent Introduction of Parents Benefit- (독일 일-가정 양립정책과 젠더레짐 변화에 대한 연구 -최근 부모수당제도의 도입을 중심으로-)

  • Sim, Sangyong
    • Korean Journal of Social Welfare
    • /
    • v.65 no.3
    • /
    • pp.265-289
    • /
    • 2013
  • The purpose of this study is to analyse the reality and dynamics of transition of work-family reconciliation policy and gender regime in Germany to focus on recent introduction of parents benefit by applying meta path analysis. There is made of 'layering' in work-family reconciliation policy area. Because political barrier has alleviated they can introduce parents benefit, but cannot help stick to child care benefit because of internal barrier. But because parents benefit has activated by 'differential growth', German gender regime has suffered core transition of complementation that dominant structure has changed from 'sequential reconciliation' to 'concomitant reconciliation'. On the other hand, by 'purposeful decoupling' of gender area, core activists have attempted to cut the possibility of weakening of coordination relationship on main institutional areas of German model.

  • PDF

Phosphorylation Status of RNA Polymerase II Carboxyl-terminal Domain in Porcine Oocytes and Early Embryos

  • Oqani, Reza K.;Zhang, Jin Yu;Lee, Min-Gu;Diao, Yun Fei;Jin, Dong-Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.789-793
    • /
    • 2012
  • Fertilization of the oocyte commences embryogenesis during which maternally inherited mRNAs are degraded and the embryonic genome is activated. Transcription of embryonic mRNA is initiated by embryonic genome activation (EGA). RNA polymerase II (RNA Pol II) is responsible for the synthesis of mRNAs and most small nuclear RNAs, and consists of 12 subunits, the largest of which characteristically harbors a unique C-terminal domain (CTD). Transcriptional activity of RNA Pol II is highly regulated, in particular, by phosphorylation of serine residues in the CTD. Here, we have shown the presence of RNA Pol II CTD phosphoisoforms in porcine oocytes and preimplantation embryos. The distribution pattern as well as phosphorylation dynamics in germinal vesicles and during embryogenesis differed in developmental stages with these isoforms, indicating a role of RNA Pol II CTD phosphorylation at the serine residue in transcriptional activation during both oocyte growth and embryonic genome activation. We additionally examined the effects of the RNA Pol II inhibitor, ${\alpha}$-amanitin, on embryo development. Our results show that inhibition of polymerase, even at very early stages and for a short period of time, dramatically impaired blastocyst formation. These findings collectively suggest that the functionality of maternal RNA Pol II, and consequently, expression of early genes regulated by this enzyme are essential for proper embryo development.

Endothelial Ca2+ signaling-dependent vasodilation through transient receptor potential channels

  • Hong, Kwang-Seok;Lee, Man-Gyoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.4
    • /
    • pp.287-298
    • /
    • 2020
  • Ca2+ signaling of endothelial cells plays a critical role in controlling blood flow and pressure in small arteries and arterioles. As the impairment of endothelial function is closely associated with cardiovascular diseases (e.g., atherosclerosis, stroke, and hypertension), endothelial Ca2+ signaling mechanisms have received substantial attention. Increases in endothelial intracellular Ca2+ concentrations promote the synthesis and release of endothelial-derived hyperpolarizing factors (EDHFs, e.g., nitric oxide, prostacyclin, or K+ efflux) or directly result in endothelial-dependent hyperpolarization (EDH). These physiological alterations modulate vascular contractility and cause marked vasodilation in resistance arteries. Transient receptor potential (TRP) channels are nonselective cation channels that are present in the endothelium, vascular smooth muscle cells, or perivascular/sensory nerves. TRP channels are activated by diverse stimuli and are considered key biological apparatuses for the Ca2+ influx-dependent regulation of vasomotor reactivity in resistance arteries. Ca2+-permeable TRP channels, which are primarily found at spatially restricted microdomains in endothelial cells (e.g., myoendothelial projections), have a large unitary or binary conductance and contribute to EDHFs or EDH-induced vasodilation in concert with the activation of intermediate/small conductance Ca2+-sensitive K+ channels. It is likely that endothelial TRP channel dysfunction is related to the dysregulation of endothelial Ca2+ signaling and in turn gives rise to vascular-related diseases such as hypertension. Thus, investigations on the role of Ca2+ dynamics via TRP channels in endothelial cells are required to further comprehend how vascular tone or perfusion pressure are regulated in normal and pathophysiological conditions.

Activation Conditions of Sprinkler Head Considering Fire Growth Scenario (화재성장시나리오에 따른 스프링클러 헤드의 작동조건)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.45-51
    • /
    • 2020
  • The aim of this study is to investigate the gas temperature and velocity during sprinkler activation considering the fire growth scenario based on the thermal response model of the sprinkler. The fire source is assumed to have time square fire growth scenarios with a maximum heat release rate of 3 MW. Eight types of standard and fast-response sprinkler heads with an operating temperature range of 65-105 ℃ and a response time index range of 25-171 m1/2s1/2 were adopted. The temperature difference between the gas stream and the sensing element of the sprinkler head decreased as the fire growth slowed down, and the RTI value decreased. The overall gas temperature and velocity conditions predicted using the FDS model at sprinkler activation were in reasonable agreement with those of standard test conditions of the sprinkler head response. However, the sprinkler head could be activated at lower limits of gas temperature and velocity under the current test conditions for a slowly growing fire scenario.

Daily influent variation for dynamic modeling of wastewater treatment plants

  • Dzubur, Alma;Serdarevic, Amra
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.111-123
    • /
    • 2020
  • Wastewater treatment plants (WWTPs) with activated sludge system are widely used throughout the most common technologies in the world. Most treatment plants require optimization of certain treatment processes using dynamic modeling. A lot of examples of dynamic simulations require reliable data base of diurnal variation of the inflow and typical concentrations of parameters such as Chemical Oxygen Demand (COD), Total Kjeldahl Nitrogen (TKN), etc. Such detailed data are not available, which leads to problemsin the application of dynamic simulations. In many examples of plants, continuous flow measurements are only performed after the primary clarifier, whereas measurements from influent to the plant are missing, as is the case with the examples in this paper. In some cases, a simpler, faster and cheaper way can be applied to determine influent variations, such as the "HSG-Sim" method ("Hochschulgruppe Simulation"). "Hochschulgruppe Simulation" is a group of researchers from Germany, Austria, Switzerland, Luxembourg, Netherlands and Poland (see http://www.hsgsim.org). This paper presents a model for generating daily variations of inflow and concentration of municipal wastewater quality parameters, applied to several existing WWTPs in Bosnia and Herzegovina (B&H). The main goal of the applied method is to generate realistic influent data of the existing plants in B&H, in terms of flow and quality, without any prior comprehensive survey and measurements at the site. The examples of plants show the influence of overflow facilities on the dynamics of input flow and quality of wastewater, and a strong influence of the problems of the sewerage systems.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.