• Title/Summary/Keyword: Activated carbons

Search Result 293, Processing Time 0.02 seconds

Thermal Desorption of Propylamine and XPS Analysis on Surface Modified Activated Carbon Fibers (표면 개질된 활성탄소 섬유의 Propylamine 탈착과 XPS 분석)

  • Kim Byeoung-Ku;Yang Burm-Ho
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.59-67
    • /
    • 2005
  • Activated carbon fiber (ACF) was surface modified by nitric acid to improve the adsorption efficiency of the propylamine. The adsorption amount of propylamine of the modified ACF increased $17\%$ more than that of as-received ACF. Desorption of propylamine from the propylamine saturated ACF was occurred in two steps, the first step started arround $50^{\circ}C$ showing the desorption of physically adsorbed propylamine and the second step started at $200^{\circ}C$ showing the decomposition of chemically adsorbed propylamine. Total desorption amount of propylamine from the modified ACF was larger than that of the as-received ACF because of increased functional groups. The oxygen and nitrogen contents on the modified ACF increased by 1.5 and 3 times compared with the as-received ACF. A part of propylamine adsorbed on ACF formed pyridine-like or pyrrolic structures with 2 carbons exposed on the surface of the ACF. It was found that propylamine reacted with strong or weak acidic functional groups such as -COOH or -OH existed on ACF surface.

A Study on the Characteristics of Activated Carbons Supported Metal by Microwave Irradiation (마이크로파 조사에 따른 금속이 담지 된 활성탄의 특성 연구)

  • Kim, Sung-Wook;Kim, Jung-Bae;Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.18 no.5
    • /
    • pp.501-508
    • /
    • 2009
  • In this study, the characteristics of granular activated carbon (GAC) supported metal was investigated in an area influenced by flame discharge and temperature variation during irradiating microwave. The modified GAC was formulated by impregnating metal hydroxides of nickel (Ni/GAC), barium (Ba/GAC), copper (Cu/GAC), zinc (Zn/GAC), cobalt (Co/GAC) and lanthanum (La/GAC). Ba/GAC was selected as it showed lack of spark discharge and temperature increasing aspects. Comparison of adsorption and desorption amount of GAC and Ba/GAC showed that adsorption and desorption rate of the GAC were higher than those of Ba/GAC. The results show that the presence of barium can decrease adsorption/desorption rate because of plugging pore of GAC. Toluene regeneration rate of Ba/GAC was better than that of GAC due to barium loading. Finally, GAC with barium can be controled a rapid increasing temperature and spark discharge, increased the regeneration rate of toluene during desorption by irradiating microwave.

Production of Activated Carbon from Bamboo by Gas Activation Method (기상 활성화법에 의한 대나무 활성탄 제조)

  • 조광주;박영철
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.166-172
    • /
    • 2004
  • The activated carbon was produced from Sancheong bamboo by steam and carbon dioxide gas activation methods. The carbonization of raw material was conducted at 90$0^{\circ}C$ and gas activation reactions were conducted with respect to various conditions. -activation temperature 750-90$0^{\circ}C$, the flow rate of steam 0.5-2g-$H_2O$/g-char$.$hr, the flow rate of carbon dioxide 5-30$m\ell$-$CO_2$/g-char-min and activation time 1-5 hr. The prepared activated carbons were measured yield, the adsorption capacity of iodine and methylene blue, BET specific surface area and pore size distribution. The adsorption capacity of iodine (680.5-1526.1 mg/g) and methylene blue (18.3-221.5 mg/g) increased with creasing activation temperature and activation time. The adsorption capacity of iodine and methylene blue increased with the activation gas quantity in the range of 0.5-1.5g-$H_2O$/g-charㆍhr, 5-18.9$m\ell$-Co$_2$/g-charㆍmin. But those decreased over those range due to the pore shrinkage. The steam activation method was superior in efficiency to carbon dioxide activation method.

Evaluation of Adsorption Characteristics of Radioactive Iodine (I-131) for Various Materials of Granular Activated Carbon (GAC) (입상활성탄 재질별 방사성 핵종(I-131) 흡착 특성 평가)

  • Park, Hong-Ki;Son, Hee-Jong;Yeom, Hoon-Sik;Kim, Young-Jin;Choi, Jin-Taek;Ryu, Dong-Choon
    • Journal of Environmental Science International
    • /
    • v.24 no.9
    • /
    • pp.1123-1129
    • /
    • 2015
  • This research was performed by means of several different virgin granular activated carbons (GAC) made of each coal, coconut and wood, and the GACs were investigated for an adsorption performance of iodine-131 in a continuous adsorption column. Breakthrough behavior was investigated that the breakthrough points of the virgin two coals-, coconut- and wood-based GACs were observed as bed volume (BV) 7080, BV 5640, BV 5064 and BV 3192, respectively. The experimental results of adsorption capacity (X/M) for iodine-127 showed that two coal- based GACs were highest (208.6 and $139.1{\mu}g/g$), the coconut-based GAC was intermediate ($86.5{\mu}g/g$) and the wood-based GAC was lowest ($54.5{\mu}g/g$). The X/M of the coal-based GACs was 2~4 times higher than the X/M of the coconut-based and wood-based GACs.

Removal of Toxic Pollutants from Aqueous Solutions by Adsorption onto Organo-kaolin

  • Sayed Ahmed, S.A.
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.305-313
    • /
    • 2009
  • In this study, the adsorption of toxic pollutants onto cetyltrimethylammonium kaolin (CTAB-Kaolin) is investigated. The organo-kaolin is synthesized by exchanging cetyltrimethylammonium cations (CTAB) with inorganic ions on the surface of kaolin. The chemical analysis, the structural and textural properties of kaolin and CTAB-kaolin were investigated using elemental analysis, FTIR, SEM and adsorption of nitrogen at $-196^{\circ}C$. The kinetic adsorption and adsorption capacity of the organo-kaolin towards o-xylene, phenol and Cu(II) ion from aqueous solution was investigated. The kinetic adsorption data of o-xylene, phenol and Cu(II) are in agreement with a second order model. The equilibrium adsorption data were found to fit Langmuir equation. The uptake of o-xylene and phenol from their aqueous solution by kaolin, CTAB-kaolin and activated carbon proceed via physisorption. The removal of Cu(II) ion from water depends on the surface properties of the adsorbent. Onto kaolin, the Cu(II) ions are adsorbed through cation exchange with $Na^+$. For CTAB-kaolin, Cu(II) ions are mainly adsorbed via electrostatic attraction with the counter ions in the electric double layer ($Br^-$), via ion pairing, Cu(II) ions removal by the activated carbon is probably related to the carbon-oxygen groups particularly those of acid type. The adsorption capacities of CTAB-kaolin for the investigated adsorbates are considerably higher compared with those of unmodified kaolin. However, the adsorption capacities of the activated carbons are by far higher than those determined for CTAB-kaolin.

Comparative Investigation of the Hydrogen Production of Zinc/carbons Prepared from Non-activated Carbon and Surface-modified Activated Carbon by Treatment with Zinc Salts

  • Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.607-612
    • /
    • 2007
  • Zn-AC and Zn-H-AC series prepared from non- and surface-modified activated carbon were investigated in terms of their hydrogen production capacity. An increase in the concentration of the zinc salts used with these series was shown to lead to a decrease in the values of the surface textural properties. The existence of zinc complexes on the surface was confirmed from an analysis of XRD data. The SEM micrographs of the two different sample types showed that the transformation of the carbon surface with an acid pre-treatment significantly change the metal contents on the surfaces of the carbon matrix. The EDX spectra indicated that all of the samples were richer in the amount of oxygen and zinc compared to any other elements. The results obtained using the Boehm's titration method showed that the positive introduction of the acidic groups on the carbon surfaces with the acid treatment is correlated with an increase in the amounts of zinc complexes with variation of the acidic groups. In terms of the hydrogen production performance, the volume fractions of the Zn-H-AC series were found to produce higher amounts than the Zn-AC series as a function of the metal contents considering the effects of the acid treatment.

A study on removal of 1,4-dioxane in drinking water by multi filtration system (다단계 필터시스템에서의 음용수 중 1,4-Dioxane 제거)

  • Lee, Kang Jin;Pyo, Heesoo;Yoo, Je Kang;Lee, Dae Woon
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.154-162
    • /
    • 2005
  • Recently, 1,4-Dioxane is known as the contaminant in water plants in Korea. Owing to its toxicity and potential health effect, 1,4-Dioxane must be determined at very low levels in drinking water. Studies on the removal of 1,4-Dioxane in drinking water were performed by using multi filtration system with activated carbons and membrane filter. For extraction of 1,4-Dioxane, methyl-t-butyl ether (MTBE) was used and then analyzed using gas chromatography-mass selective detection (GC/MSD). Removal experiment was proceeded for 300 L with a sample volume of 30 L. At first. The removal was 70%, 95% and 100% after using activated carbon, membrane and second activated carbon respectively. At larger accumulated water fluxes, the removal rate decreased at each filter. After the flow volume was 300 L, the removal rate was 30%, 88% and 99% through the first activated carbon, membrane and second activated carbon respectively.

Effects of surface properties and solution ph on the pollutants removal of K-PAC (K-PAC의 오염물질 제거에 대한 용액의 pH와 표면 특성의 효과)

  • Oh, Won-Chun;Bae, Jang-Soon
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.436-443
    • /
    • 2005
  • A study of physical properties and their application using K-powdered activated carbon system followed powdered carbon dispersion was carried out at laboratory. scale. Two types of K-powdered activated carbon for the dispersion have been used in this study to investigate the catalytic removal efficiency of pollutants from the wastewater. From the surface properties obtained for carbon samples treated with aqueous solutions containing potassium salts, main investigations were subjected to isotherm shape, SEM, EDX and surface functional groups. K-powdered activated carbons were dispersed to wastewater with pH variation to investigate the removal efficiency for the color, COD, T-N and T-P. From these removal results of the piggery waste using K-powdered activated carbon, satisfactory removal performance in the region of pH 6~8 was achieved. The excellent effects for the dispersion of the K-powdered activated carbon were proved by the above mentioned properties of the material for adsorption and trapping of organics, and catalytic effects.

A Study on the Surface and Antibacterial Properties for M(Cd, Cu)-Activated Carbon (M(Cd, Cu)-활성탄의 표면 특성과 항균성에 관한 연구)

  • Oh, Won-Chun;Kim, Jong-Gyu;Kim, Myung-Kun
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.105-110
    • /
    • 1999
  • The studies on the adsorption properties and the antibacterial effects of the Cd and Cu-treated activated carbon were carried out. From the adsorption studies on the series of these metal-treated activated carbons, typical Type-I isotherm was observed. The surface areas of the treated carbon obtained from BET equation were in the range of $1101-1418m^2/g$ for Cd-AC and of $1084-1361m^2/g$ for Cu-AC. Using ${\alpha}_s$-plot, the micropore volumes and pore size distribution were obtained. From the SEM study, it is also observed that many of micropores in activated carbon are blocked by window blocking effect of metals after the impregnation. Finally, antibacterial effects of M-activated carbon against Escherichia coli was discussed. From the study, the area of antibacterial activity becomes larger with the increase of the amount of metal treated.

  • PDF

Sorption Behavior of Acetic Acid onto Activated Carbons (활성탄에서의 아세트산 흡탈착 거동)

  • Lee, Chae-Young;Chung, Jin-Suk;Shin, Eun-Woo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1130-1134
    • /
    • 2008
  • Acetic acid has been used as a solvent in the process of manufacturing terephthalic acid. Although the used acetic acid has been mainly separated and recovered through the distillation process, adsorption process can be applied to recover a small amount of acetic acid remaining in the stream after the distillation process. In this study, activated carbon was selected as an adsorbent for acetic acid and the effects of temperature and acid treatment on adsorption capacity were investigated. The adsorption capacities of activated carbon for acetic acid were 0.176 mmol/g at 303 K and 0.118 mmol/g at 343 K, respectively. Adsorption capacity decreased with increasing temperature. The acid treatment of the activated carbon induced the increase in adsorption capacity, which was ascribed to increase in surface functional groups such as phenolic hydroxyl groups and carboxilic acid groups on the carbon surface. In the results of acetic acid desorption, 89% of adsorbed acetic acid was desorbed from activated carbon.