• Title/Summary/Keyword: Activated carbon fiber

Search Result 240, Processing Time 0.025 seconds

A Study on the Removal Efficiency of VOCs and Operating Characteristics by Using of Bioscrubber Trickling Filter(BSTE) (Bioscrubber Trickling Filter(BSTF)의 VOCs 제거 및 운전 특성에 관한 연구)

  • Park, Jin-Do;Suh, Jung-Ho;Lee, Hak-Sung
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.4 s.85
    • /
    • pp.309-315
    • /
    • 2005
  • Volatile organic compounds (VOCs) and odor materials are major sources of air pollution in Ulsan city, where much chemical plants are located. Therefore, it is necessary to develop a new reactor which can remove VOCs and odor materials effectively and be equipped at the end of pipe easily. A modified reactor (bioscrubber trickling filter, BSTF), which have both characteristics of biofilter and bioscrubber, was developed and tested on its reactivity with several VOCs using two types of media, fiber and activated carbon 4- ceramic(A/C). It was observed that the removal efficiencies of several types of VOCs such as acetaldehyde, ethylalcohol, butanol, diethylamine and triethylamine were up to $95\%$ when they had about 100 ppm of initial concentration and 80 seconds of residence time. Good attachment of microorganisms to both media, where it is thought the reaction efficiency can be determined according to the amount of microorganisms attachment, observed with scanning electron microscopy(SEM). Initial pressure drops of the packed bed with both media were 229 $mmH_2O/m$ at A/C column and 670 $mmH_2O/m$, respectively. However, maximum pressure drop of fiber column during the operation was over 1,647 $mmH_2O/m$. Therefore, it was thought that the fiber material would not suitable to use in the local plant as a packed bed media.

Behavior of THM Formation Pormation Potential for Micro-Pollutants Mixed with SBR Effluent in BAC Treatment (활성오니 처리수중에 함유된 미량유기오염물의 생물학적 활성탄 처리시 THM 생성능의 거동)

  • Han, Myung Ho;Kim, Jeong Mog;Huh, Man Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.84-98
    • /
    • 2000
  • Control of Trihalomethanes(THMs) is a major concern of many water treatment plants. A number of researchers have studied the effectiveness of activated carbon adsorption process in removing THMs or organic halogen compounds. Recently, attention has been paid to the biological activated carbon (BAC) treatment of THM precursors as an alternative to the carbon adsorption treatment because of its effectiveness as well as its low running cost. In this study, changes of THM formation potential(THMFP) and removal of substrates in the SBR effluent were investigated in an attempt to clarify the mechanisms of the decrease/increase of THMFP in the BAC treatment. The increase and decrease of THMFP concentrations were observed in effluents during prolonged operation. When PCP or DBS was feeded as substrate contained in SBR effluent, the THMFPs were easyly removed with TOCs removal. But the case of SBR effluent containing SDS or glycine was introduced, and when microbial growth came to its near steady state, the THMFPs of treated effluents were increased more or less in comparison to those in the influents. Such increases of THMFP coincided with the increase in microbial growth within the activated carbon fiber(ACF) column. In the case of only sucrose was feeded as substrate on ACF colume, THMFP concentrations of effluent were higher than those of influent. The THMFP concentration was significantly increased on inlet part of ACF column, which biomass inhabits abundantly, then they were decreased gradually. These increases mean production of the secondary THM precursors by biological activities, which can be removed by adsorption and biological degradation on ACF column.

  • PDF

Study on the Carbon Membrane System for the Wastewater Treatment Via the Electric Adsorption and Desorption Process (전기적 흡.탈착법을 이용한 폐수처리용 탄소막 시스템 연구)

  • JeGal, Jong-Geon;Lee, Yong-Hwan;Jaung, Jae-Yun
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • To remove total dissolved solid (TDS) from wastewater, a carbon membrane system was prepared, using carbon membranes made from conductive activated carbon and poly(vinylidene fluoride) (PVDF). Using 100 ppm aqueous solutions of NaCl, $Na_2SO_4,\;MgCl_2,\;MgSO_4$, the basic properties of the carbon membranes used were studied. For the treatment of the real dye wastewater supplied from Kyungin Corp., a pilot scale carbon membrane system was also prepared, which was consisted of 240 plies of carbon membranes of $20cm{\times}20cm$ (length${\times}$width). Using the real wastewater with different TDS such as 941, 2050, 2810, 3830, 4960, 6030 ppm, prepared by the dilution of the original wastewater with pure water, the performance of the pilot scale carbon membrane system was studied. The effect of the operational conditions was studied.

Hierarchical porous carbon nanofibers via electrospinning

  • Raza, Aikifa;Wang, Jiaqi;Yang, Shan;Si, Yang;Ding, Bin
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.

Effect of Pre-Treatment by Ozone on Chemical Surface Modification of Activated Carbon Fiber (오존에 의한 전처리가 활성탄소섬유 화학적 표면개질에 미치는 영향)

  • Jang, Jung Hee;Han, Gi Bo;Kim, Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.415-421
    • /
    • 2013
  • To increase specific surface property of activated carbon fiber(ACF), chemical activation(CA) using alkali metals and surface treatment(ST) using oxidant was widely used. The CA and ST process developed micro-pore on the surface of ACF by chemical reaction of the alkali metals and oxidative of oxidant, respectively. To improve the efficiency of CA process for developing micro-pores on the surface of ACF, the ST process was adopted as an pre-treatment method. After treatment of ST process, ACF properties was investigated depending on the ST pre-treatment process. FT-IR, TG and elemental analysis of the ACF are carried out, and an adsorption property of ACF was also evaluated using toluene(which in typical volatile organic matter). Once the single CA process is used, the surface area and adsorption capacity of ACF were increased from 1,483 to 1,988 $m^2/g$ and from 0.22 to 0.27 $g_{-Tol.}/g_{-ACF}$, respectively. On the other hands, once the ST and CA processes are used successively, the surface area and adsorption capacity of ACF are greatly increase(where the surface area is 2,743 $m^2/g$ and the adsorption capacity is 0.37 $g_{-Tol.}/g_{-ACF}$). It indicates that the combined process of ST and CA can improve the surface process properties of ACF.

Electrosorption of U(VI) by Surface-Modified Activated Carbon Fiber (표면처리 활성탄소섬유에 의한 U(VI)의 전기흡착)

  • Lee, Yu Ri;Jung, Chong Hun;Ryu, Seung Kon;Oh, Won Zin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.60-65
    • /
    • 2005
  • The electrosorption of U(VI) from waste water was carried out by using activated carbon fiber(ACF) felt electrode in a continuous electrosorption cell. In order to enhance the electrosorption capacity at lower potential, ACF felt was chemically modified in acidic, basic and neutral solution. Pore structure and functional groups of chemically modified ACF were examined, and the effect of treatment conditions was studied for the adsorption of U(VI). Specific surface area of all ACFs decreases by this treatment. The amount of acidic functional groups decreases with basic and neutral salt treatment, while the amount increases a lot with acidic treatment. The electrosorption capacity of U(VI) decreases on using the acid treated electrode due to the shielding effect of acidic functional groups. Base treated electrode enhances the capacity due to the reduction of acidic functional groups. The electrosorption amount of U(VI) on the base treated electrode at -0.3 V corresponds to that of ACF electrode at -0.9 V. Such a good adsorption capacity was not only due to the reduction of shielding effect but also the increase of $OH^-$ in the electric double layer on ACF surface by the application of negative potential.

The Sampling Efficiencies of Volatile Organic Compounds(VOCs) to the Diffusive Monitor with Activated Carbon Fiber (활성탄섬유를 이용한 확산포집기의 공기 중 유기용제 포집효율에 관한 연구)

  • Byeon, Sang-Hoon;Park, Cheon-Jae;Oh, Se-Min;Lee, Chang-Ha
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.187-201
    • /
    • 1996
  • This study was to evaluate the efficiency of diffusive monitor using activated carbon fiber(ACF, KF-1500) in measuring airborne organic solvents. The following characteristics were identified and studied as critical to the performance of diffusive monitor; recovery, sampling rate, face velocity, reverse diffusion and storage stability. For the evaluation of the performance of this monitor, MIBK, PCE, toluene were used as organic solvents. In the sampling rate experiments, eight kinds of solvents (n-hexane, MEK, DIBK, MCF, TCE, CB, xylene, cumene) as well as the above solvents were used. The results were as follows: 1. The desorption efficiencies(DE's) of ACF diffusive monitor ranged from 83 % to 101 %. In contrast, those of coconut shell charcoal ranged from 78 % to 102 %. Especially, the DE's of ACF for the polar solvents such as MEK were superior to those of charcoal. 2. Experimental sampling rates on ACF were average 42ml/min(37-46ml/min) for 11 organic solvents at $24{\pm}2^{\circ}C$, $50{\pm}5%RH$. However ideal sampling rates(DA/L) were 33 % higher than experimental sampling rates. 3. The initial response(15~16 min) of the testing monitor was 2 times higher than the actual concentration determined by the reference methods at $24{\pm}2^{\circ}C$, $8{\pm}5%RH$ and $80{\pm}5%RH$. Within 1 hours, the curve reached a linear horizontal line at low humidity condition. But sampling efficiencies decreased with respect to time at high humidity condition. And sampling efficiencies were higher at high humidity condition than low humidity condition for MIBK. 4. At very low velocity (less than 0.02 m/sec), the concentration of ACF diffusive monitor were poorly estimated. But ACF diffusive monitor were not affected at higher velocity(0.2 m/sec-0.6 m/sec). 5. There was no significant reverse diffusion when the ACF monitors were exposed to clean air for 2 hours after being exposed for 2 hours at the level of 1 TLV. 6. There was no significant sample loss during 3 weeks of storage at room temperature and 5 weeks of storage at refrigeration.

  • PDF

Preparation of Electrospun PI-based ACF Web for Electrode of Electric Double Layer Capacitior(EDLC) (정전기 방사에 의한 EDLC 전극용 폴리이미드계 활성탄소섬유 웹의 제조)

  • Choi, Young-Ok;Kim, Chan;Yang, Gab-Seung
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.134-137
    • /
    • 2003
  • 탄소섬유나 활성탄소섬유(activated carbon fiber, ACF)는 일반적으로 출발물질에 따라 polyacrylonitrile(PAN)계, 아크릴(acryl)계, 피치(pitch)계, 페놀(phenol)계 등으로 분류할 수 있다. 보통 습식, 용융 혹은 용융분사(melt-blown) 방사 방법에 의해 섬유 형태로 형성한 다음 산화성 가스 분위기에서 불융화 과정을 거쳐 열에 대한 안정성을 부여하여 불활성 분위기에서 탄소화하여 탄소섬유를 제조하거나, 수증기나 이산화 탄소와 같은 산화성 분위기에서 활성화하여 활성탄소섬유를 제조한다. (중략)

  • PDF

Synthesization and Characterization of Pitch-based Activated Carbon Fiber for Indoor Radon Removal (실내 라돈가스 제거를 위한 Pitch계 활성탄소섬유 제조 및 특성연구)

  • Gwak, Dae-Cheol;Choi, Sang-Sun;Lee, Joon-Huyk;Lee, Soon-Hong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.207-218
    • /
    • 2017
  • In this study, pitch-based activated carbon fibers (ACFs) were modified with pyrolysis fuel oil (PFO). Carbonized ACF samples were activated at $850^{\circ}C$, $880^{\circ}C$ and $900^{\circ}C$. A scanning electron microscope (SEM) and a BET surface area apparatus were employed to evaluate the indoor radon removal of each sample. Among three samples, the BET surface area and micropore area of ACF880 recorded the highest value with $1,420m^2{\cdot}g^{-1}$ and $1,270m^2{\cdot}g^{-1}$. Moreover, ACF880 had the lowest external surface area and BJH adsorption cumulative surface area of pores with $151m^2{\cdot}g^{-1}$ and $35.5m^2{\cdot}g^{-1}$. This indicates that satisfactory surface area depends on the appropriate temperature. With the above scope, ACF880 also achieved the highest radon absorption rate and speed in comparison to other samples. Therefore, we suggest that the optimum activation temperature for PFO containing ACFs is $880^{\circ}C$ for effective indoor radon adsorption.

Selective Adsorption of Uranium Ionsin High Concentration of Chemical Salts

  • Jung, Chong-Hun;Won, Hui-Jun;Kim, Gye-Nam;Park, Wangkyu;Wonzin Oh
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.119-120
    • /
    • 2004
  • A study on the selective adsorption of uranium(VI) from a high concentration of chemical salts has tern peformed to investigate the uranium removal mechanisms and the application conditions of the electrosorption technique using the activated carbon fiber(ACF) as a good conductive electrosorption adsorbent. Electrosorption test were carried out using an electrochemical cell.(omitted)

  • PDF