• Title/Summary/Keyword: Activated carbon fiber

Search Result 240, Processing Time 0.027 seconds

Preparation and photocatalytic activity of ACF/$TiO_2$ composites by using titanium n-butoxide and acid modified activated carbon fiber

  • Oh, Won-Chun;Kwon, Ho-Joug;Chen, Ming-Liang;Zhang, Feng-Jun;Ko, Weon-Bae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.3
    • /
    • pp.144-151
    • /
    • 2009
  • Photocatalytic degradation of methylene blue (MB) in aqueous solution was investigated using $TiO_2$ coated on various acid modified activated carbon fiber (ACF). The ACFs/$TiO_2$ composites were prepared from titanium n-butoxide (TNB) as titanium precursor and various acid modified ACFs. The prepared samples are heat treated at 973 K. Then the ACF/$TiO_2$ composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX). Moreover, photocatalytic degradation of MB by the ACF/$TiO_2$ composites was determined under UV irradiation. The results shows that the photocatalytic activity of ACF/$TiO_2$ composites ($AT1{\sim}AT4$) prepared with TNB and various acid modified ACF was much better than that of ACF/$TiO_2$ composite (AT) prepared with TNB and non-acid modified ACF, and the effects improved with order of sample AT3 > AT4 > AT1 > AT2.

Characterization of a Novel MnS-ACF/TiO2 Composite and Photocatalytic Mechanism Derived from Organic Dye Decomposition

  • Zhu, Lei;Jo, Sun-Bok;Jo, Jung-Hwan;Ye, Shu;Ullah, Kefayat;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.139-144
    • /
    • 2014
  • Activated carbon fiber (ACF) was modified with MnS nanoparticles to prepare MnS-ACF, and it was employed for preparation of MnS-$ACF/TiO_2$ composites with titanium (IV) n-butoxide (TNB). The properties of MnS-$ACF/TiO_2$ composites were characterized by XRD, SEM, and EDX. EDX results showed the presence of C, O, and Ti as major elements and traces of the metal elements Mn and S. The photocatlytic activity was evaluated by degradation of methyl blue (MB) and methyl orange (MO) dye. The results demonstrated that as-prepared samples could effectively photodegrade MB and MO under UV irradiation. Subsequently, the decomposition of MB solution showed the combined effects of adsorptions by ACF and enhanced photocatalytic effect by $TiO_2$. Finally, the photocatalytic effect increased due to photo-induced-electron absorption effect by ACF and electron trap effect by comodified MnS nanoparticles.

Effect of Operating Parameters on Electrochemical Degradation of Rhodamine B by Three-dimensional Electrode (3차원 전극을 사용한 Rhodamine B의 전기분해에 미치는 운전인자의 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.4
    • /
    • pp.295-303
    • /
    • 2009
  • A simulated wastewater containing the dye Rhodamine B (RhB) was electrolytically treated using a three-dimensional electrode reactor equipped with granular activated carbon (GAC) as particle electrode. The effect of type of packing material (GAC, ACF, Nonwoven fabric fiber coated with activated carbon), amounts of GAC packing (25-100 g), current (0.5-3 A) and electrolyte concentration (0.5-3 g/l) was evaluated. Experimental results showed that performance for RhB decolorization of the 3 three-dimensional electrodes lie in: GAC > Nonwoven fabric fiber > ACF. When considered RhB decolorization, oxidants concentration and electric power, optimum GAC dosage was 50 g. Generated concentration of 3 oxidants ($ClO_2$, free Cl, $H_2O_2$) was increased with increase of applied current, however optimum current for RhB degradation was 2.5 A. The oxidants concentration was increased with increase of NaCl concentration and optimum NaCl dosage for RhB degradation was 1.5 g/l.

Preparation and Characterization of ACF Using Lyocell Adopting Surface Modification Process (리오셀 표면개질공정을 도입한 ACF 제조 및 특성)

  • Jo, Young Hyuk;Jin, Young Min;Lee, Soon Hong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • Lyocell fibers were used as a precursor in order to improve yield and strength of cellulose-based precursor while manufacturing activated carbon fiber(ACF). Lyocell fibers as a precursor for the preparation of ACF were surface-modified by reaction with 3-aminopropyltriethoxysilane(APTES) and pre-treated with KOH and H3PO4. Using aforementioned precursor, ACFs were prepared by a series of stabilization, carbonization and activation process at high temperatures. On each process, FT-IR, TGA, UTM and SEM were used to observe fibers' physical properties including structure and porous surfaces. FT-IR results proved that surface modification was achieved during stabilization, carbonization and activation process. TGA results during carbonization process found that surface modified fibers with APTES 0.02 mol(A2) showed higher thermostability, and extended pre-treatment increased yield. Especially, yield was found to have an increase of 10~20 wt% with surface modification during activation process. UTM results showed that tensile strength has the same order of concentration of APTES after surface modification, however, was found to show lower tensile strength than lyocell fibers after stabilization process. SEM results revealed that more homogeneous porosity control could be proceed after modifying the surface for the effective removal of hazardous substances.

Preparation of Fe-ACF/TiO2 Composites and their Photocatalytic Degradation of Waste Water

  • Oh, Won-Chun;Bae, Jang-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.667-674
    • /
    • 2008
  • In this study, we prepared Fe-activated carbon fiber(ACF)/$TiO_2$ composites with titanium (VI) n-butoxide (TNB) as the titanium source for ACF pre-treated with iron compounds through the impregnation method. In terms of textural surface properties, the composites demonstrate a slight decrease in the BET surface area of the samples and an increase in the amount of iron compounds treated. The surface morphology of the Fe-ACF/$TiO_2$ composites was characterized by means of SEM. The composites have a porous texture with homogenous compositions of Fe and titanium dioxide distributed on the sample surfaces. The phase formation and structural transition of the iron compounds and titanium dioxide were observed in X-ray diffraction patterns of the Fe-ACF/$TiO_2$ composites. The chemical composition of the Fe-ACF/$TiO_2$ composites, which was investigated with EDX shows strong peaks for the C, O, Fe and Ti elements. The photo degradation results confirm that the Fe-ACF/$TiO_2$ composites show excellent removal activity for the COD in piggery waste due to photocatalysis of the supported $TiO_2$, radical reaction by Fe species, and the adsorptivity and absorptivity of ACF.

Propellant Shelf-life Extension by Surface-modified Activated Carbon Fiber (활성탄소섬유를 이용한 추진제 저장수명 연장)

  • Yoon, Keun Sig;Lee, Young Seak;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.443-448
    • /
    • 2011
  • The propellant has a short shelf-life because of nitrogen oxides that were released from nitrocellulose decomposition. As-received and surface-modified ACFs were applied to remove the nitrogen oxides with intend to extend the shelf-life of propellant. The specific surface area of modified ACFs was slightly decreased but nitrogen function groups such as pyridine, pyridone and pyrrol were created on the surface of ACFs. As a result, the NO removal capacity of the surface-modified ACF by propellant waste increased about twice than that of the as-received ACF. The shelf-life of propellant was extended about 1.25 times by accompanying surface-modified ACF.

Ammonia Adsorption of Activated Carbons Synthesized from Polymeric Precursor (고분자 전구체로부터 합성된 활성탄소를 이용한 암모니아 흡착)

  • Jung, Woo-Young;Park, Soo-Jin;Pak, Pyong-Ki
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.311-312
    • /
    • 2003
  • Activated carbons (ACs) are widely used in adsorption for the removal of gaseous and aqueous pollutants[1]. Although a wide range of carbonaceous materials can be converted into ACs, the coal and lingocellulosic materials are the most commonly used starting materials for the production of commercial ACs. Recently, there are a quite large number of studies regarding the preparation of ACs from various polymeric materials because of high carbon yield and low ash content In this work, ACs are prepared from polystyrene (PS) by chemical activation with potassium hydroxide and the effect of the KOH-to-PS ratio to adsorption of ammonia is investigated. (omitted)

  • PDF

Preparation of Carbon Electrodes Using Activated Carbon Fibers and Their Performance Characterization for Capacitive Deionization Process (활성탄소섬유를 이용한 탄소전극의 제조 및 축전식 탈염공정에서의 성능평가)

  • Park, Cheol Oh;Oh, Ju Seok;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.271-278
    • /
    • 2018
  • In this study, the carbon electrodes using activated carbon fibers (ACFs) were prepared for the capacitive deionization process. The Polyvinylidene fluoride (PVDF) was used as the binder and the mixed ACFs with proper solvent was cast on the commercial graphite sheets to prepare the carbon electrodes. At this moment, the different particle sizes of ACFs were applied and the mixing ratio of solvent, PVDF and ACFs, 80 : 2 : 18 and 80 : 5 : 15, were used for the electrode preparation. Then their salt removal efficiencies were characterized under the various operating conditions, adsorption potential and time, desorption potential and time, concentration of feed NaCl solution and flow rate as well. Typically, the salt removal efficiency of 53.6% were obtained at the particle size below $32{\mu}m$, mixing ratio 80 : 2 : 18, adsorption 1.2 V and 3 min, desorption -0.1V and 1 min, and 15 mL/min flow rate of NaCl 100 mg/L.

Microstructural Changes during Activation Process of Isotopic Carbon Fibers using CO2 Gas(I)-XRD Study (이산화탄소를 이용한 등방성 탄소섬유의 활성화과정 중 발생하는 구조변화(I)-XRD를 이용한 분석)

  • Roh, J.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.11
    • /
    • pp.742-748
    • /
    • 2003
  • The structural parameters such as Lc, La and d of $CO_2$activated isotropic carbon fibers(ACFs) were obtained from XRD in order to understand a development mechanism of micropores. And the structural parameters were compared with specific surface area(SSA) data. The $d_{002}$, Lc, and La of the original fiber were measured to be 4.04$\AA$, 6.2$\AA$, and 23.6$\AA$, respectively. Carbonization of outer-parts and oxidization of inner-parts of the original fibers were far from completeness. It was observed that the structural changes of the ACFs during activation take place severely, therefore the carbonization and the oxidization of the fibers take place simultaneous with pore developments. The $d_{002}$ of the ACFs was increased to be 2.80$\AA$, and the La of the ACFs was decreased to be 17.0$\AA$ by activation. It was shown that the pores are developed continuously from the outer-parts to the inner-parts of the fibers, therefore the SSA increases as a result of the development of pores fully to the inner-parts of the fiber when the burn-off degree was over :39%. It seems that the (002) planes of crystallites contribute to the micropore wall related to the super high SSA.SSA.

Micellar Enhanced Ultrafiltration (MEUF) and Activated Carbon Fiber (ACF) Hybrid Processes for the Removal of Cadmium from an Aqueous Solution

  • Rafique, Rahman Faizur;Lee, Seunghwan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.775-780
    • /
    • 2014
  • Micellar enhanced ultrafiltration (MEUF) was used to remove cadmium from an aqueous solution using sodium dodecyl sulfate (SDS) as a surfactant. Operational parameters such as initial permeate flux, retentate pressure, initial cadmium concentration, pH solution, molecular weight cut-off (MWCO), and molar ratio of cadmium to SDS were investigated. Removal efficiency of cadmium from an aqueous solution increased with an increase of retentate pressure, pH solution and molar ratio of cadmium to SDS, and decreased with an increase of initial permeate flux. Higher removal efficiency of cadmium from the aqueous solution was achieved using lower MWCO (smaller membrane pore size). Under optimized experimental condition, cadmium removal efficiency reached 74.6 % within an hour. Using MEUF-ACF hybrid process the removal efficiency of both cadmium and SDS was found to be over 90%.