• Title/Summary/Keyword: Activated carbon electrode

Search Result 182, Processing Time 0.031 seconds

Optimal Distance between Positive and Negative Electrode-Plates Coated with Activated Carbon in Dust Removal Chamber (활성탄전극을 이용한 분진제거에서 전극의 적정 간격에 관한 연구)

  • Kim, Kwang Soo;Park, Hyun Chul;Jun, Tae Hwan;Lee, Ju Haeng;Nam, Sang Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.821-826
    • /
    • 2013
  • The purposes of this research are to study on optimal distance between positive and negative electrodes in dust removal chamber. The experiments were performed with electrode-plate gab arranging in order of 3 cm, 2 cm, 1 cm in series while varying influent flow-rate. From the experimental results of dust removal the optimal influent linear velocity was 6 cm/sec and the total mass of attached dust on the surface of electrode-plate was increased as electrode-plate gab is closer. But in case of electrode-plate gab being very close about 1 cm or so, the attached dust on the surface of electrode-plate was shown releasing from electrode-plate due to dust electric-charge changing (reverse ionization). Evantually. optimal distance between positive and negative electrode-plates was about 2 cm and also optimal dust loading rate was about $24mg/min{\cdot}m^2$.

Fabrication and analysis of electrochemical performance for energy storage device composed of metal-organic framework(MOF)/porous activated carbon composite material (금속유기골격체(Metal-organic Framework) 소재가 첨가된 다공성 활성탄소 복합재료 전극 기반의 에너지 저장 매체 제조 및 전기화학적 특성 분석)

  • Lee, Kyu Seok;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.260-267
    • /
    • 2020
  • In this study, supercapacitor based on the all solid state electrolyte with PVA(polyvinyl alcohol), ionic liquid as a BMIMBF4(1-buthyl-3-methylimidazolium tetrafluoroborate) and activated carbon/Ni-MOF composite was fabricated and characterized its electrochemical properties with function of MOF. In order to analysis and comparison that electrochemical performances [including cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge test] of prepared supercapacitor based on activated carbon/Ni-MOF composite and all solid state electrolyte. As a result, specific capacitance of the supercapacitor without Ni-MOF was 380 F/g which value decreased to 340 F/g after adding Ni-MOF to activated carbon as a electrode material. This result exhibited that decreased electrochemical property of the supercapacitor effected on physical hinderance in the electrode. In further, it needs to optimization of the Ni-MOF amount (wt%) in the electrode composite to maximize its electrochemical performances.

Electrochemical Characteristics of an Electric Double Layer Supercapacitor Electrode using Cooked-Rice based Activated Carbon (쌀밥으로 제조된 활성탄을 사용하는 전기이중층형 슈퍼커패시터 전극의 전기화학적 특성)

  • Jo, Un;Kim, Yong-Il;Yoon, Jae-Kook;Yoo, Jung-Joon;Yoon, Ha-Na;Kim, Sung-Soo;Kim, Jong-Huy
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.129-137
    • /
    • 2013
  • From the cooked-rice as a raw material, activated carbons throughout a hydrothermal synthesis and vacuum soak of KOH for chemical activation were obtained. Activated carbon electrodes for electric double layer supercapacitors were prepared and electrochemical characteristics were examined. Including the specific surface area by BET method and pore size distribution by NLDFT method, physical properties of activated carbons were investigated by means of SEM, EDS, XRD, and TG analyses. Cycle voltammetry and AC-impedance measurements were conducted to confirm the electrochemical characteristics for the electrodes. From hydrothermal synthesis, $5{\sim}7{\mu}m$ diameters of spherical carbons were obtained. After the activation at $800^{\circ}C$, it was notable for the activated carbon to be the specific surface $1631.8cm^2/g$, pore size distribution in 0.9~2.1 nm, and micro-pore volume $0.6154cm^3/g$. As electrochemical characteristics of the activated carbon electrode in 6M KOH electrolyte, it was confirmed that the specific capacitances of 236, 194, and 137 F/g at the scan rate of 5, 100, and 500 mV/s respectively were exhibited and 91.2% of initial capacitance after 100,000 cycles at 200 mV/s was maintained.

Dye Decomposition in Seawater using Electro-Fenton Reaction (전기-펜톤 반응을 이용한 해수 중의 염료 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.383-393
    • /
    • 2020
  • To increase electrolysis performance, the applicability of seawater to the iron-fed electro-Fenton process was considered. Three kinds of graphite electrodes (activated carbon fiber-ACF, carbon felt, graphite) and dimensionally stable anode (DSA) electrode were used to select a cathode having excellent hydrogen peroxide generation and organic decomposition ability. The concentration of hydrogen peroxide produced by ACF was 11.2 mg/L and those of DSA, graphite, and carbon felt cathodes were 12.9 ~ 13.9 mg/L. In consideration of durability, the DSA electrode was selected as the cathode. The optimum current density was found to be 0.11 A/㎠, the optimal Fe2+ dose was 10 mg/L, and the optimal ratio of Fe2+ dose and hydrogen peroxide was determined to be 1:1. The optimum air supply for hydrogen peroxide production and Rhodamine B (RhB) degradation was determined to be 1 L/min. The electro-Fenton process of adding iron salt to the electrolysis reaction may be shown to be more advantageous for RhB degradation than when using iron electrode to produce hydrogen peroxide and iron ion, or electro-Fenton reaction with DSA electrode after generating iron ions using an iron electrode.

Performance and Safety of EDLC of PVdF-PVP Mixed Binder (PVdF-PVP 복합결합제를 이용한 EDLC의 성능과 안정성)

  • 김경민;오호성;정세일;이용욱;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2001.05a
    • /
    • pp.319-324
    • /
    • 2001
  • High surface area and high pore volume activated carbon was prepared by KOH activation of rice hull. The electrodes were fabricated by compounding the commercial and rice hull activated carbons with PVdF and PVdF-PVP mixed binders without addition of conductivity improver. The electrodes fabricated with rice hull activated carbon and PVdF-PVP mixed binders showed the best performance because the PVP played as a pore-forming agent. The electrode exhibited excellent electrochemical characteristics having 7.9 W.h/kg of energy density, 33.5 F/g of speific capacitance, 0.7 $\Omega$ of ESR and good efficiency of self-discharge compared with that fabricated with commercial activated carbons.

  • PDF

Preparation and Characteristics of Fluorinated Carbon Nanotube Applied Capacitive Desalination Electrode with Low Energy Consumption (불소화 탄소나노튜브를 적용한 저에너지 소모형 축전식 탈염전극의 제조 및 특성)

  • Yoo, Hyun-woo;Kang, Ji-hyun;Park, Nam-soo;Kim, Tae-il;Kim, Min-Il;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.386-390
    • /
    • 2016
  • The surface of carbon nanotubes (CNTs) was modified by fluorination and applied to conductive materials to improve the energy efficiency of a capacitive desalination (CDI) electrode. CNTs were fluorinated at room temperature with a mixed gas of fluorine and nitrogen, and activated carbon based CDI electrodes were then prepared by adding 0-0.5 wt% of untreated CNTs or fluorinated CNTs with respect to the activated carbon. Fluorinated CNTs showed improved dispersibility in the electrode and also slurry as compared to untreated CNTs, which was confirmed by the zeta potential and scanning electron microscopy. Fluorinated CNTs added electrodes showed higher desalination efficiency but lower energy consumption than those of using untreated CNTs added electrodes. This was attributed to the decrease in the resistance of CDI electrodes due to the improved dispersibility of CNTs by fluorination.

A Cyclic Voltammetric Study of Electrodes for Reverse Electrodialysis

  • Lee, Seo-Yoon;Lee, Dong-Ju;Yeon, Kyeong-Ho;Kim, Woo-Gu;Kang, Moon-Sung;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.145-150
    • /
    • 2013
  • In this study, the electrochemical investigation of various electrodes for reverse electrodialysis using potassium ferrocyanide and potassium ferricyanide as a redox system was carried out. Cyclic voltammetry was the employed method for this electrochemical study. From the results of cyclic voltammograms for various electrode materials, i.e., Au, Vulcan supported Pt, activated carbon, carbon nanofiber, Vulcan, the Vulcan electrode showed the lowest overpotential, but the Pt electrode having slightly higher overpotential obtained slightly higher anodic and cathodic current densities for the $Fe(CN)_6{^{4-}}/Fe(CN)_6{^{3-}}$ redox couple. The cyclic voltammograms for the Vulcan electrode confirmed very good electrochemical reversibility and kinetic behavior. As a result, among the electrode materials, the Vulcan electrode is the most promising electrode material for reverse electrodialysis.