• Title/Summary/Keyword: Activated Sludge

Search Result 789, Processing Time 0.05 seconds

Low Temperature Effects on the Nitrification in a Nitrogen Removal Fixed Biofilm Process Packed with SAC Media

  • Jang, Se-Yong;Byun, Im-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • A fixed biofilm reactor system composed of anaerobic, anoxic(1), anoxic(2), aerobic(1) and aerobic(2) reactor was packed with synthetic activated ceramic (SAC) media and adopted to reduce the inhibition effect of low temperature on nitrification activities. The changes of nitrification activity at different wastewater temperature were investigated through the evaluation of temperature coefficient, volatile attached solid (VAS), specific nitrification rate and alkalinity consumption. Operating temperature was varied from 20 to $5^{\circ}C$. In this biofilm system, the specific nitrification rates of $15^{\circ}C$, $10^{\circ}C$ and $5^{\circ}C$ were 0.972, 0.859 and 0.613 when the specific nitrification rate of $20^{\circ}C$ was assumed to 1.00. Moreover the nitrification activity was also observed at $5^{\circ}C$ which is lower temperature than the critical temperature condition for the microorganism of activated sludge system. The specific amount of volatile attached solid (VAS) on media was maintained the range of 13.6-12.5 mg VAS/g media at $20{\sim}10^{\circ}C$. As the temperature was downed to $5^{\circ}C$, VAS was rapidly decreased to 10.9 mg VAS/g media and effluent suspended solids was increased from 3.2 mg/L to 12.0 mg/L due to the detachment of microorganism from SAC media. And alkalinity consumption was lower than theoretical value with 5.23 mg as $CaCO_3$/mg ${NH_4}^+$-N removal at $20^{\circ}C$. Temperature coefficient (${\Theta}$) of nitrification rate ($20^{\circ}C{\sim}5^{\circ}C$) was 1.033. Therefore, this fixed film nitrogen removal process showed superior stability for low temperature condition than conventional suspended growth process.

Enrichment of Ammonia-Oxidizing Bacteria for Efficient Nitrification of Wastewater

  • KIM WON-KYOUNG;CUI RONG;JAHNG DEOKJIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.772-779
    • /
    • 2005
  • Ammonia-oxidizing bacteria (AOB) were enriched by repeating fed-batch cultivations in an AOB-selective medium of activated sludges from a domestic wastewater treatment plant. Enriched culture showed strong capabilities of ammonia oxidation [0.810 mg $NH_4^+$-N/mg mixed liquor suspended solids (MLSS)$\cdot$day] as well as $NO_x^-$-N production (0.617 mg $NO_x^-$-N/ mg MLSS$\cdot$day). Degree of enrichment was examined through fluorescent in situ hybridization (FISH) analyses using an AOB-specific Cy3-labeled oligonucleotide probe (NSOl90) and terminal-restriction fragment length polymorphism (T-RFLP) analyses. FISH analyses confirmed that the fraction of AOB among 4',6-diamidino-2-phenylindole (DAPI)-stained cells increased from about less than $0.001\%$ to approximately $42\%$ after enrichment of AOB, and T-RFLP analyses showed that bacterial community became simpler as enrichment was continued. When the enriched culture of AOB was added (150 mg/l as dry suspended solid) to the normal activated sludge (3,000 mg/l as dry suspended solid), nitrification efficiencies were improved from 0.020 mg $NO_x^-$-N/mg MLSS$\cdot$day to 0.041 mg $NO_x^-$-N/mg MLSS$\cdot$day in a synthetic wastewater and also from 0.0007 mg $NO_x^-$-N/mg MLSS$\cdot$day to 0.0918 mg $NO_x^-$-N/mg MLSS$\cdot$day in a real domestic wastewater. Therefore, it is expected that this enrichment method could be used for improving efficiency of nitrification in wastewater treatment plants.

Denitrification Characteristics and Mircoorganism Composition of Acclimatec Denitrifier Consortium

  • Park, Enu-Ju;Seo, Jae-Koan;Kim, Joong-Kyun;Suh, Kuen-Hack;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.410-414
    • /
    • 2000
  • The effect of the COD/N ratio on denitrification characteristics was evaluated for the development of a denitrification process. Activated sludge, acclimated to an anoxic condition, was used as the denitrifier consortium (mixture of denitrifying organisms) for enhanced nitrogen removal in a recirculating aquarium system. Synthetic wastewater containing nitrate was used as the influent solution and glucose was used as the carbon source for denitrification. The COD/N ratio varied within a range of 1.5-7.2. The denitrification efficiency was higher than 97% even at a COD/N ratio of 1.5. Under a theoretical COD/N ratio of 3.0, nitrite was detected, however, the amount was less than 1% of the total influent nitrogen. The number of both nitrate-reducing bacteria and denitrifying bacteria reached $3.5{\times}10^5/ml$ with a COD/N ratio of 1.5 after 45 days of operation.

  • PDF

Biodegradability of Viscose Rayon and Lyocell Fibers (비스코스 레이온과 리오셀의 생분해성)

  • Yoon Chang Sang;Park Chung Hee;Kang Yun-kyung;Im Seung Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.3_4 s.141
    • /
    • pp.470-477
    • /
    • 2005
  • This study was carried out to evaluate the biodegradability of viscose rayon and lyocell fibers, employing soil burial test, activated sludge test and enzymatic hydrolysis. Using X-ray analysis, crystallinity and morphology change was investigated. External changes after degradation were also observed by SEM and digital photographs. Vscose rayon fibers exhibited higher biodegadation than lyocell fibers, indicating that lower crystallinity favored the biodegradation. Among the biodegradability of lyocell fibers there was a tendency that fibers with lower crystallinity and higher moisture regain had higher values. When external changes after degradation being observed, it was shown that there were microorganisms growing on the surfaces of samples accompanying lading and weakening. From these results it was concluded that biodegradability of the specimens was most closely correlated to the moisture regain and crystallinity of fibers which reflects hydrophilicity and internal structure.

Wastewater Treatment using Air-lift Biofilm Reactor (공기부상 생물막 반응기를 이용한 산업폐수 처리)

  • 최광수;한기백
    • Journal of Environmental Science International
    • /
    • v.9 no.4
    • /
    • pp.351-367
    • /
    • 2000
  • Air-lift biofilm reactor should be an admirable process substituting conventional activated sludge process, because of its small area requirement as well as high volumetric loading capacity and stability against loading and chemical shocks. However most of the past research on the performance of ABR was focused on the sewage treatment. This research studied the applicability of ABR to treat high strength wastewater. A bench-scale ABR was operated to treat high strength synthetic wastewater, tannery wastewater and petrochemical wastewater, and its applicability was conclusive In case of synthetic wastewater, ABR showed good performance in which the substarate removal efficiency was higher that 80% even under short HRT(1.4 hr) and high volumetric loading rate(9.3 kgCODcr/$m^3$.day). When ABR was applied to treat tannery wastewater, it was suggested that the maximum volumetric loading rate and F/M ratio should be 7.7kgCODcr/$m^3$.day, 0.76 $day^{-1}$, respectively. And high substrate removal efficiency over than 90 % was observed with 4,000 mgCODcr/L of petrochemical wastewater. Even though effluent concentration was quite high, ABR should be applicable to treat the high strength wastewater, because of its high loading capacity.

  • PDF

Analysis of Temperature Effect on Activated Sludge Process at Cheong-Gye Cheon Sewage Treatment Plant (활성오니공법에 있어서 수온이 처리효율에 미치는 영향에 관한 분석 -청계천 하수종말처리장에 대하여-)

  • 이은경
    • Journal of Environmental Health Sciences
    • /
    • v.7 no.1
    • /
    • pp.9-20
    • /
    • 1981
  • This study was performed to determine the correlationship between temperature and overall removals of BOD, SS and to demonstrate the effect of temperature on treatment performance. These data for a period from February 1, 1977 to January 31, 1980 were obtained from the Cheong-Gye Cheon Sewage Treatment plant. The results of correlation and stepwise multiple regression analysis were as follows. 1) Secondary effluent BOD and SS showed negative correlationship with water temperature, with correlation coefficient of -0.1710, and -0.1654 respectively. 2) Correlation coefficient of BOD, SS removal rate and water temperature were 0.1823 and 0.0429 respectively. 3) Regresion equation for estimate of BOD removal rate was as follows $\widehat{Y}_1$ (BOD removal rate)=63.9994+0.5442X(water temperature). And BOD removal rate showed non significant change according to the water temperature. 4) Regression equation for estimate of SS removal rate was as follows $\widehat{Y}_2$ (SS removal rate)=61.6881+0.1514X(Water temperature). And SS removal rate showed non significant change according to the water temperature. 5) According to the Stepwise Multiple Regression analysis, water temperature ranked second order in the BOD removal rate estimation and the equation was as follows $\widehat{Y}_1$ (BOD removal rate)=69.7398+0.2665 $X_1$ (Primary effluent BOD)+0.3562 $X_2$ (Water temperature)-0.0122 $X_3(Flow)+4413.271X_4$ (Organic Loading).

  • PDF

The Study on Evaluating Performances of Lab Sacle-Advanced $A_{2}O$ with Changing System Using Biofilm Process (생물막 담체를 이용한 실험실 규모 $A_{2}O$공법의 시스템 변형에 따른 고도처리 성능 평가에 관한 연구)

  • Kim, Min-Sik;Kang, Gu-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.209-218
    • /
    • 2012
  • Recently, as reinforced water quality standards for wastewater has been announced, more efficient and more powerful wastewater treatment processes are required rather than the existing activated sludge process. In order to meet this demands, we evaluate Task 1-4 about lab scale $A_{2}O$ process using biofilm media. Task 1, 2, and 3 use 'Module A' which has 4 partitions (Anoxic/Anerobic/Oxic/Oxic). Task 4 uses 'Module B' which has 2 partitions including a denitrification reactor with an Inclined plug flow reactor (IPFR) and a nitrification reactor with biofilm media. The denitrification reactor of Module B is designed to be upward flow using IPFR. The result of evaluating at each Task has shown that attached growth system has better capacity of removal efficiency for organic matter and nitrogen with the exception of phosphorus. Task 4 which has the most outstanding removal efficiency has 90.5% of $BOD_{5}$ removal efficiency, 97.8% of ${NH_4}^{+}-N$ removal efficiency, 65% of T-N removal efficiency and 92% of T-P removal efficiency with additional chemical phosphorus removal system operated at HRT 9hr, Qi:Qir 1:2, and BOD/T-N ratio 2.7.

Biofilter를 이용한 폐가스중의 styrene 제거

  • Gang, Yeom-Seok;Hwang, Jae-Ung;Jang, Seok-Jin;Park, Seong-Hun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.394-397
    • /
    • 2000
  • Lab-scale biofilter was evaluated for the removal of styrene from a waste gas stream. Compost and polyurethane form were used as packing material (50 : 50) and activated sludge from a wastewater treatment plant was innoculated initially. Nitrogen limitation was observed during the biofilter operation and nitrogen source should be properly supplemented. When ammonium sulfate is used as N-source. 200mg carbon was removed for each mg of nitrogen. The effects of the volumetric styrene loading on the styrene elimination capacity (EC) and the removal efficiency (RE) was also tested. The results showed $EC_{max}$ was 4.8kg $C/m^3{\cdot}day$ and above RE 95% was achieved at EBRT 1min.

  • PDF

Selection and Characterization of Pseudomonas aeruginosa EMS1 Mutant strain Showing Enhanced Biosurfactant Production

  • Cha, Mi-Sun;Lee, Kuen-Hee;Lee, Na-Eun;Lee, Sang-Joon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.434-437
    • /
    • 2003
  • A new bacterial strain, was isolated from activated sludge, identified and named P. aeruginosa EMS1. The new strain produced surface-active rhamnolipids by batch cultivation in mineral salts medium with waste flying oils. The mutant strain KH7, designated P. aeruginosa EMS1, derived by random mutagenesis with N-methyl-N-nitro-N-nitrosogoanidine treatment producing high levels of the biosurfactants was selected by an ion-pair plate assay. The mutant strain KH7 showed 4-5 times more hydrocarbon emulsification as compared to the parent when grown on waste frying oils and various hydrocarbons. Furthermore, P. aeruginosa EMS1 and mutant strain KH7 was also able to use whey as a co-substrate for growth and biosurfactant production. As results of this study, mutant strain KH7 is a very efficient biosurfactant producer, and its culture conditions are relatively inexpensive and economical. Rhamnolipid is synthesized by the rhlAB-encoded rhamnosyltransferase. To be convinced of these genes, we performed PCR based on P. aeruginosa PAO1 whole-genome database. rhl gene cluster nucleotide and amino acid sequences were compared for both parent and mutant. Comparison of nucleotide sequence of rhlAB, there were usually terminal's codons exchange.

  • PDF

Properties of Silk-Sericin Films Modified by Isocyanate Compounds (화학 개질된 실크세리신 필름의 특성)

  • Yoon, Heung-Soo;Takahashi, Kiyohisa
    • Textile Coloration and Finishing
    • /
    • v.20 no.2
    • /
    • pp.29-37
    • /
    • 2008
  • Polar amino groups of the waste SS(silk-sericin) were modified by two isocyanate compounds of MOI[2-(methacryloyloxy)ethyl isocyanate] and AOI [2-(acryloyloxy)ethyl isocyanate]. When the MOISS (MOI-modified silk sericin) or AOISS(AOI-modified silk sericin) was pressed hot, vinyl groups in the MOI or AOI were polymerized and then the flexible and transparent films were obtained. Tensile moduli and strengths of the MOISS films were significantly improved as the MOI contents increased. By the addition of the isocyanate compounds, silk sericin films exhibited lower solubility to the distilled water($80^{\circ}C$) and also lower swell ratio to the distilled water(room temperature). In the effect of tensile properties and restraining the water swelling, MOI was better than AOI. BOD(biochemical oxygen demand)/TOD(theoretical oxygen demand) of the pure sericin film was almost 100% perfect level after 10 days immersion into the activated sludge. With increasing isocyanate content reacted with polar amino groups, BOD/TOD decreased. When more than 50 mol% of polar amino groups remained unreacted, sericin films could retain more biodegradability. Comparing with MOI from the viewpoint of biodegradability, AOI was more effective.