Abstract
Polar amino groups of the waste SS(silk-sericin) were modified by two isocyanate compounds of MOI[2-(methacryloyloxy)ethyl isocyanate] and AOI [2-(acryloyloxy)ethyl isocyanate]. When the MOISS (MOI-modified silk sericin) or AOISS(AOI-modified silk sericin) was pressed hot, vinyl groups in the MOI or AOI were polymerized and then the flexible and transparent films were obtained. Tensile moduli and strengths of the MOISS films were significantly improved as the MOI contents increased. By the addition of the isocyanate compounds, silk sericin films exhibited lower solubility to the distilled water($80^{\circ}C$) and also lower swell ratio to the distilled water(room temperature). In the effect of tensile properties and restraining the water swelling, MOI was better than AOI. BOD(biochemical oxygen demand)/TOD(theoretical oxygen demand) of the pure sericin film was almost 100% perfect level after 10 days immersion into the activated sludge. With increasing isocyanate content reacted with polar amino groups, BOD/TOD decreased. When more than 50 mol% of polar amino groups remained unreacted, sericin films could retain more biodegradability. Comparing with MOI from the viewpoint of biodegradability, AOI was more effective.