• Title/Summary/Keyword: Activated Sludge

Search Result 789, Processing Time 0.032 seconds

Treatment of Organic Waste with Microorganisms of Mixed Population

  • Kim, Gi-Eun
    • KSBB Journal
    • /
    • v.22 no.3
    • /
    • pp.129-133
    • /
    • 2007
  • This study represents that a removal efficiency of organic matters in wastewater is activated by a sludge process using new mixed microbial population. In case of mixed microorganisms, removal rates of suspended solid (SS), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) were over 90 percent under experimental condition, and removal efficiency of organic matters, sludge density index (SDI) and capillary suction time (CST) in mixed population were higher than that in not-mixed microorganism, while total kjeldahl nitrogen (TKN) and total phosphorus (T-P) which indicate a degree of eutrophication were removed easily in both case. From these results, we may propose that an application of the mixed microbial population is useful to treat domestic wastewater including a great deal of organic matters.

Effect of trace oxygen on H2S removal in anaerobic digestion (혐기소화 시 미량 산소가 H2S 제거에 미치는 영향)

  • Jo, Eun-Young;Park, Kwang-Su;Ahn, Johng-Hwa
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.21-25
    • /
    • 2019
  • This work experimentally determined the effect of microaerobic condition on anaerobic digestion of thickened waste activated sludge in semi-continuous mesophilic digesters at hydraulic retention time of 20 days. The concentration of hydrogen sulfide was $7{\pm}2ppm$ at the microaerobic condition and $14{\pm}2ppm$ at the anaerobic condition. Removal efficiency of volatile solid was not significantly different between microaerobic ($40{\pm}8%$) and anaerobic ($38{\pm}8%$) conditions. There was no important difference between microaerobic ($1,352{\pm}98ml/d$) and anaerobic ($1,362{\pm}104ml/d$) conditions in the biogas production, either. Therefore, it could be concluded that the application of the microaerobic condition was an efficient method of the hydrogen sulfide removal from the biogas.

Investigation of the Optimum Operational Condition of Bio-Hydrogen Production from Waste Activated Sludge (폐활성 슬러지로부터 생물학적 수소 생산을 위한 최적 조건 연구)

  • Kim, Dong-Kun;Lee, Yun-Jie;Yu, Myong-Jin;Pak, Dae-Won;Kim, Mi-Sun;Sang, Byoung-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.362-367
    • /
    • 2006
  • Waste activated sludge(WAS) collected from domestic wastewater treatment plant is biomass that contains large quantities of organic matter. However, relevant literature show that the bio-hydrogen yield using WAS was too low. In this study, the effect of pretreatment of WAS on hydrogen yield was investigated. Pretreatment includes acid and alkali treatments, grinding, heating, ozone and ultrasound methods. After pretreatment organic matters of WAS were solubilized and soluble chemical oxygen demand(SCOD) was increased by 14.6 times. Batch experiments were conducted to investigate the effects of pre-treatment methods and buffer solution, hydrogen partial pressure, and sodium ion on hydrogen production from WAS by using heated anaerobic mixed cultures. Experimental results showed that addition of buffer solution, efficient pre-treatment method with alkali solution, and gas sparging condition markedly increased the hydrogen yield to 0.52 mmol $H_2/g$-DS.

Biological Hydrogen Production from Mixed Organic Waste of Food and Activated Sludge by Pre-treatment (음식물쓰레기와 전처리한 폐활성슬러지의 혼합비율에 따른 생물학적 수소생산)

  • Lee, Jun-Cheol;Kim, Jae-Hyung;Choi, Kwang-Keun;Pak, Dae-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1044-1050
    • /
    • 2007
  • In this study, Bio-hydrogen is produced from organic waste mixtures containing food waste and waste activated sludge (WAS). The effects of different operational factor on hydrogen production, including various solubilization methods for pretreatments of WAS, pH and different ratios of food waste and WAS, were investigated. The highest hydrogen production values are obtained as 4.3 mL $H_2/g$ $VS_{consumed}$ in the case of applying the mixed pre-treatments of alkali and ultrasonic. The pH value in bio-reactor increased from 4 to 8 after the ultrasonic treatment with alkali and the hydrogen yield touched its highest value in the pH range of 5.0 to 5.5. Similarly, the hydrogen production reached the level of 13.8 mL $H_2/g$ $VS_{consumed}$ using the same pre-treatment method from the mixture of food waste and WAS. The ratio of 2 : 1 produced a maximum amount of hydrogen of 5.0 L $H_2/L/d$. The amount of volatile fatty acids(VFAs) including acetate, propionate and butyrate, were also varied considerably. Propionate decreased consistently with rising of hydrogen while butyrate comparing to acetate relatively increased in the effluent.

Biosynthesis of polyhydroxyalkanoate by mixed microbial cultures from hydrolysate of waste activated sludge (혼합미생물배양체를 이용한 폐활성슬러지 가용화 산물로부터 polyhydroxyalkanoate 생합성)

  • Park, Taejun;Yoo, Young Jae;Jung, Dong Hoon;Lee, Sun Hee;Rhee, Young Ha
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.200-207
    • /
    • 2017
  • A new approach to the solubilization of waste activated sludge (WAS) using alginate-quaternary ammonium complex beads was investigated under controlled mild alkaline conditions. The complex beads were prepared by the reaction of sodium alginate (SA) with 3-(trimethoxysilyl)propyl-octadecyldimethylammonium chloride (TSA) in acid solution, followed by crosslinking with $CaCl_2$. Treatment of WAS with SA-TSA complex beads was effective for enhancing the efficacy of WAS solubilization. The highest value of soluble chemical oxygen demand (SCOD) concentration (3,900 mg/L) was achieved after 10 days of treatment with 30% (v/v) SA-TSA complex beads. The WAS solubilization efficacy of the complex beads was also evaluated by estimating the concentrations of volatile fatty acids (VFAs). The maximum value of VFAs was 2,961 mg/L, and the overall proportions of VFAs were more than 75% of SCOD. The main components of VFAs were acetic, propionic, iso-butyric, and butyric acids. These results suggest that SA-TSA complex beads might be useful for enhancing the solubilization of WAS. The potential use of VFAs as the external carbon substrate for the production of polyhydroxyalkanoate (PHA) by a mixed microbial culture (MMC) was also examined. The enrichment of PHA-accumulating MMC could be achieved by periodic feeding of VFAs generated from WAS in a sequencing batch reactor. The composition of PHA synthesized from VFAs mainly consisted of 3-hydroxybutyrate. The maximum PHA content accounted for 25.9% of dry cell weight. PHA production by this process is considered to be promising since it has a doubly beneficial effect on the environment by reducing the amount of WAS and concomitantly producing an eco-friendly biopolymer.

Color Removal Efficiency for the Effluent of Activated Sludge Process for Pig Wastewater by TiO$_2$ Treatment System (TiO$_2$를 이용한 양돈장의 활성오니처리방류수의 탈색처리에 관한 연구)

  • 최희철;이덕수;권두중;강희설;곽정훈;최동윤;연규영;최영수;양창범
    • Journal of Animal Environmental Science
    • /
    • v.9 no.2
    • /
    • pp.85-92
    • /
    • 2003
  • These experiments were conducted to evaluate the efficiency of the color removal treatment system of pig wastewater by $TiO_2$. The results obtained are summarized as follow : 1 The color removal efficiency of effluent of activated sludge process by $TiO_2$ level were 59.7 and 52.5% for 1.0 and 2.0g/$\ell$ at 360 minute of operation time, respectively. 2. The color of pig wastewater was changed from 655 color unit(cu) to 146cu of the wastewater treatment of pH 5 at 300 minute of operation time. 3. The $H_2O_2$ level for color removal showed at 200mg/$\ell$ and in that level, the color removal efficiency was 52.5%. 4. The color removal efficiency of 365nm UV intensity was 29.4%, but 254nm of UV intensity was higher(50.1%) than 365nm for color removal.

  • PDF

A Study on the Growth Characteristics of Commercially Developed Nitrifying Bacteria and its Application to Activated Sludge Process (상업용 질산화 박테리아의 성장특성과 활성슬러지 공정에서의 적용 방법에 따른 연구)

  • Whang, Gyu-Dae;Lee, Bong-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.595-604
    • /
    • 2006
  • The growth characteristics of Commercially Developed Nitrifying Bacteria (CDNB) were studied in laboratoryscale. CDNB, a pure, artificially isolated bacterium, was cultivated to produce Cultivated Nitrifying Bacterium Group (CNBG). The average ammonia removal rate of CDNB was 0.0234g $NH_4^+-N/g$ MLSS/hr. CNBG was produced in the batch reactor and Specific Nitrification Rate (SNR) was determined at 0.0107g $NH_4^+-N/g$ MLSS/hr. The SNR of CNBG was lower than the SNR of CDNB because the diverse and multi-cultured microbial growth took place during cultivation. The effect of the temperatures and the mixing ratios of sewage and culture solution on the SNR of CNBG was studied. The SNR of CNBG, 0.0107g $NH_4^+-N/g$ MLSS/hr at $27^{\circ}C$, decreased to 0.0048g $NH_4^+-N/g$ MLSS/hr at $15^{\circ}C$, and temperature coefficient (${\Theta}$) was calculated to be 1.07. With the varied sewage mixing ratios, the SNR of CNBG remained unchanged. Activated sludge reactors maintaining an MLSS of 2,000mg/L at HRT of 4 h were operated under conditions in which dosage of Concentrated CNBG Solution (CCNBGS, 10,000mg MLSS/L) and application method of CNBG were varied. The reactor with 20mL of CCNBGS took shorter time to oxidize $NH_4^+-N$ reaching 1mg/L than the reactor with 5mL of CCNBGS showing that higher dosages were associated with greater mass removal of $NH_4^+-N$. However, the total removal was not great. In terms of different methods of CNBG application, reactor seeded with 20mL of CCNBGS took 3days to reach 1mg/L of effluent ammonia concentration while reactor dosed with 20% (v/v) CNBG implanted media took 2days. Both the control reactor and the reactor dosed with 20% (v/v) media only did not reach 1mg $NH_4^+-N/L$ after operating 18days. The reactor with CNBG implanted media had the highest $NH_4^+-N$ removal rate because of maintaining high concentration of Nitrifying Oxidizing Bacteria (NOM), and is regarded as an appropriate method for the activated sludge process.

Continuous Bio-hydrogen Production from Food Waste and Waste Activated Sludge (음식물 쓰레기와 폐활성 슬러지를 이용한 생물학적 수소생산 및 수소생산 미생물 군집분석)

  • Kim, Dong-Kun;Lee, Yun-Jie;Kim, Dong-Im;Kim, Ji-Seong;Yu, Myong-Jin;Pak, Dae-Won;Kim, Mi-Sun;Sang, Byoung-In
    • KSBB Journal
    • /
    • v.20 no.6
    • /
    • pp.438-442
    • /
    • 2005
  • Batch experiments were performed to investigate the effects of volumetric mixing ratio(v/v) of two substrates, food wastes(FW) and waste activated sludge(WAS). In batch experiments, optimum mixing ratio for hydrogen production was found at $10{\sim}20$ v/v % addition of WAS. CSTR(Continuous Stirred tank reactor) was operated to investigate the hydrogen productivity and the microbial community under various HRTs and volumetric mixing ratio(v/v) of two substrates. The maximum yield of specific hydrogen production, 140 mL/g VSS, was found at HRT of 2 day and the volumetric mixing ratio of 20:80(WAS:FW). The spatial distribution of hydrogen producing bacteria was observed in anaerobic fermentative reactor using fluorescent in situ hybridization(FISH) method.

The Effect of Solubilization Pretreatment Process on Anaerobic Digestion of Waste Activated Sludge (전처리 가용화 공정이 잉여슬러지 혐기성 소화효율에 미치는 영향)

  • Yoo, Ho-Sik;Ahn, Seyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.35-43
    • /
    • 2016
  • COD properties of waste activated sludge (WAS) were investigated for various solubilization rate of mechanical pretreatment method in anaerobic digestion process. Inert COD was 37.0% of total COD in untreated WAS. Particulate biodegradable COD was converted to soluble biodegradables and particulate unbiodegradables as solubilization was processed. Particulate unbiodegradable portion of COD in WAS can be increased as particulate biodegradable portion is decreased in case of relatively long SRT of biological treatment. Thus, COD properties of WAS should be investigated in case of relatively low particulate biodegradable COD, because of possible low effect of solubilization. COD removal rate in anaerobic digester was enhanced as much as 2.1% and 15.1% for solubilization rate 5% and 35% due to pretreatment, respectively. COD removal rate was increased from 25% to 40%, and methane gas generation was increased from $607m^3/d$ to $907m^3/d$ as particulate COD of WAS was solubilized to 35% in pretreatment facilities.

Molecular Characterization of the Bacterial Community in Activated Sludges by PCR­RFLP (PCR-RFLP 방법을 이용한 활성 슬러지의 세균군집 분석)

  • Lee Hyun-Kyung;Kim Jun-Ho;Kim Chi-Kyung;Lee Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.307-312
    • /
    • 2004
  • Diversity of the bacterial communities and the relation between community structure and components of waste­water were analyzed by 16S rRNA-based molecular techniques. Clone libraries of the 16S rDNAs from the sludges were constructed by PCR and cloning. The 1,151 clones from a sludge sample of sewage treatment plant were clustered into 699 RFLP phylotypes and the 1,228 clones from the wastewater disposal plant of chemical industry were clustered into 300 RFLP phylotypes. Shannon-Weiner diversity indices of two sampling sites were 8.7 and 6.1, indicating that the bacterial community structure of sewage treatment plant was more diverse than that of wastewater disposal plant of chemical industry. Forty clones belonging to predominant RFLP types were selected and sequenced. Seventy percent (28 clones) of the sequenced clones were related to the uncultured bacteria in public databases. The ${\beta}-Proteobacteria$ dominated in the bacterial communities of investigated two sludge samples. 16S rDNA sequences of the sewage treatment plant were similar to those of other activated sludges, while the bacterial community in wastewater disposal plant of chemical industry rep­resented the strains identified from high-temperature, anaerobic, hydrocarbon-rich, and sulfur-rich environ­ments. This result suggested that bacterial communities depended upon the components of wastewater.