• Title/Summary/Keyword: Activated Sludge

Search Result 789, Processing Time 0.026 seconds

The Study of High Strength Organic Wastewater Treatment by Movinig Media Complete Mixing Activated Sludge System (회전매체를 가진 완전혼합활성슬러지 공법을 이용한 고농도 유기성 폐수 처리에 관한 연구)

  • 김흥태
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.25-33
    • /
    • 1996
  • This study was conducted to Investigate the biological treatment capability of MMCMAS(Movinig Media Complete Mixing Activated Sludge) reactor for high strength organic wastewater (Average BOD=800mg/l). And this experimental results were compared previous study for low strength organic wastewater (Average HOD=150mg/l) by the same reactor. In this study, we abtained following conclusions ; (1) The laboratory MMCMAS reactor demonstrated that SBOD removal efficiencies of more than 90% can be achieved at organic Bonding rates of 30.9 gBOD/$m^2$/d for high strength organic wastewater and 39.4 gBOD/$m^2$/d for low strength organic wastewater, respectively. (2) The nitrification rates of MMCMAS reactor was found same results of similiar organic loading rates. (3) The ratio of attached biomass to total biomass on the moving media varied in the range of 40 to 63% and 32 to 94% for high and low strength organic wastewater, respectively. And it was varied at the various concentration of influents for the similiar organic loading rates. The sludge production rates was found approximately 0.37 gVSS/$gBOD_{rem}$. in MMCMAS reactor.

  • PDF

Minimization of Excess Activated Sludge in Nonwoven Fabric Filter Bioreactor (부직포 여과막 생물반응조에서의 폐활성슬러지 감량화)

  • Jung, Kyoung-Eun;Bae, Min-Su;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.88-96
    • /
    • 2006
  • Among the various methods for minimization of waste activated sludge, maintaining a low F/M ratio in the bioreactor is known to be the most effective reliable one. In this research, various experiments were performed to check the capability of the nonwoven fabric filter bioreactor, which has been proved able to maintain a low F/M ratio by maintaining a high MLSS concentration, for excess sludge minimization. The reactor was intermittently fed with a synthetic wastewater having a COD concentration of approximately 300 mg/L and no SS. Results of the experiments showed that the F/M ratio in the reactor decreased to a minimum value of 0.02 g COD/g MLSS-day as the MLSS concentration increased to a maximum value of 31,010 mg/L. However, the measured endogenous decay coefficients and oxygen uptake rates of the MLSS confirmed that the activity of the MLSS decreased as the MLSS concentration increased. Based on the increase of MLSS in the reactor and the mass balance during the whole experimental period, the average microorganism yield coefficients were computed to be low values of 0.148 and 0.139 g MLSS/g COD, respectively. These results indicate that the nonwoven fabric filter bioreactor employed in this research is effective for minimization of excess sludge production.

Aerobic Treatment of Pigment Wastewater using Ceramic Support Carrier (세라믹 담체를 이용한 안료폐수의 호기성처리)

  • Park, Yeong-Sik;An, Gap-Hwan
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.281-286
    • /
    • 2001
  • Wastewater from the pigment industry has high levels of organics and is known as hardly biodegradable. The objective of this study is to evaluate the applicability of aerobic fixed-bed boifilm reactor packed with ceramic support carrier for the pigment wastewater treatment. Orange 2(widely used azo pigment) adsorption experiment onto biofilm and activated sludge, and continuous treatment experiments were performed. In batch adsorption experiment, maximum adsorption quantity of biofilm was at least two times higher than that of activated sludge. In continuous experiment using aerobic fixed-bed biodilm reactor, the influent concentration of COD and Orange 2 were 75~500mg/${\ell}$(0.45~3.00kg COD/$m^3.day), 5~50mg/$\ell$(0.03~0.30kg Orange 2/$m^3$.day), respectively. At a COD loading rate 2.5kg COD/$m^3$.day and Orange 2 loading rate of 0.18kg Orange 2/$m^3$.day, removal efficiency of COD and Orange 2 were over 95%, 97%, respectively.

  • PDF

Application of ASM and PHOENICS for Optimal Operation of Wastewater Treatment Plant (하수처리장 운영의 최적화를 위한 ASM, PHOENICS의 적용)

  • Kim, Joon Hyun;Han, Mi-Duck;Han, Yung Han
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.73-82
    • /
    • 2000
  • This study was implemented to find an optimal model for wastewater treatment processes using PHOENICS(Parabolic, hyperbolic or Elliptic Numerical Integration Code Series) and ASM(Activated Sludge Model). PHOENICS is a general software based upon the laws of physics and chemistry which govern the motion of fluids, the stresses and strains in solids, heat flow, diffusion, and chemical reaction. The wastewater flow and removal efficiency of particle in two phase system of a grit chamber in wastewater treatment plant were analyzed to inquire the predictive aspect of the operational model. ASM was developed for a biokinetic model based upon material balance in complex activated sludge systems, which can demonstrate dynamic and spatial behavior of biological treatment system. This model was applied to aeration tank and settling chamber in Choonchun city, and the modeling result shows dynamic transport in aeration tank. PHOENCS and ASM could be contributed for the optimal operation of wastewater treatment plant.

  • PDF

The Treatment of Box-mill Wastewater Using Aerobic Cometabolism Process - Practical Plant Test - (호기성 공동대사작용에 의한 판지폐수처리 - 현장 적용 테스트 -)

  • Cho, Yong Duck;Lee, Sang Wha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.128-137
    • /
    • 2006
  • This study aims at developing the practical technology in the treatment of box-mill wastewater using the aerobic co-metabolism principle. The conventional activated sludge method exhibited the removal efficiency of $TBOD_5$ and $TCOD_{Mn}$ as 30~50% and 40~50%, respectively. Color was rather increased by 30~130% because the conventional treatment under the aerobic condition did not induce the conversion of molecular structure of dyeing agents. Meanwhile, when the aerobic co-metabolism principle was applied to the same wastewater, the removal efficiency of $TBOD_5$ and $TCOD_{Mn}$ were obtained as 92~97% and 90~94%, respectively. In particular, color was significantly reduced down to 65~85%. The enhancement of treatment efficiency was ascribed to occur not only that the non-degradables were converted to the second substrates, but also that the enzyme activity was increased as MLVSS was kept 3000mg/l or more with the first substrates injected.

제약폐수 활성슬러지 공정에서 슬러지의 생물학적 활성 측정

  • Mun, Sun-Sik;Lee, Sang-Hun;Choe, Gwang-Geun;Lee, Sang-Hun;Mun, Hong-Man;Lee, Jin-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.533-536
    • /
    • 2001
  • In this study, biological activity in activated sludge process for pharmaceutical wastewater was analyzed by using respirometer. For various amounts of BOD loadings. oxygen uptake rate was measured and kinetic paramelers were evaluated. By repetition of experiments, optimal operating conditions (eg. MLSS. BOD loadings. oxygen concentration, etc) were decided for the enhancement of activated sludge process.

  • PDF

Wastewater Treatment by Microorganism (미생물에 의한 발효처리)

  • ;Kunisuke Ichikawa
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 1980
  • The process of biological treatment of organic wastewater is principally associated with those of self-purification in the natural water environment. The treatment system has e intensive function of stabilizing wastewater more effectively than in natural water, which is like natural water concentrated in a small space. Biological treatment of wastewater involves activated sludge and various modified process, trickling filter, rotating disk, oxidation ditch, etc. for aerobic decomposition and anaerobic processes such as anaerobic decomposition and methane fermentation. The basic characteristic of these processes is the use of mixed culture for the conversion of pollutants. This review forcuses on the various kinds of microorganisms related to each treatment processes. Kinetic analysis of the activated sludge process is discussed in order to understand the basis of control and maintenance of the biological treatment process.

  • PDF

Isolation and Identification of High Phosphate-accumulating Bacteria (인 축정능이 우수한 세균의 분리 및 동정)

  • 신공식;고정연;최우영
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.4
    • /
    • pp.286-291
    • /
    • 1999
  • By using autoradiography and phosphate medium, high phosphate accumulating bacteria were isolated from the soil of protected cultivation area and activated sludge. Selected strain, PO8, was gram-negative, rod/spherial(0.5~0.6$\times$1.0~1.2${\mu}{\textrm}{m}$ in size) and non-motile. PI4, another selected strain, was gram-negative, rod(0.4~0.5$\times$1.5~1.6${\mu}{\textrm}{m}$ in size) and motile. It also had flagella. According to their morphological, physiological and biochemical properties, the stains were identified as Acinetobacter lwoffi PO8 and Chromobacterium lividum PI4, respectively. A. lowoffi PO8 and C. lividum PI4 cultured in the P-1 medium containing 150ppm phosphate were able to uptake high phosphate up to 92% and 85%, respectively after 24 hours at 3$0^{\circ}C$ during liquid culture.

  • PDF

Biological Treatability of Toxic Industrial Wastewater (독성산업폐수의 생물학적 처리)

  • 원성연;박승국;정근욱
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.172-179
    • /
    • 1999
  • In this research, biological treatability test was conduced using seawater flocculated tannery wastewater by fixed biofilm reactor. During one cycle, the removal efficiency of organic corbon obtained with fixed biofilm process for treating tannery wastewater was considerably greater than that with activated sludge process. As the hydraulic retention time increased form 0.5day to 4day, removal efficiency of organic carbon was increased from 72% to 87.3%. Attached biomass in media increased with influent organic loading up to 29g MLSS/L, that could reduce the specific organic loading rate. The continual measurement of attached biomass was possible for the operation of the biofilm reactor. Equal and low nitrication rates were observed in both suspended growth activated sludge process and fixed biofilm process, despite commercial nitrifier was seeded. Through the process of treating the tannery wastewater, EC50 values which is measured by the use of Ceriopdaphnia dubia, were decreased to the extent of 50% after treatment of seawater flocculation and of 83% after biological treatment, respectively, compared to those of the untreated wastewater.

  • PDF

Acid Fermentation Characteristics of Waste Activated Sludge using Acids and Ultrasonication (산용해 및 초음파를 이용한 하수 슬러지의 산발효 특성)

  • Sohn, C.H.;Hong, S.M.;Lee, B.H.
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.781-788
    • /
    • 2007
  • The Carbon source to enhance the denitrification is essential matter in the advanced sewage treatment. For the high level of nutrient removal, external carbons such as ethanol, methanol, volatile fatty acids and so on should be needed. In this study, the methods to increase the sludge solubilization and acidification rate were compared with waste activated sludges and food waste leachate. Ultrasonication and acids were used for the pretreatment of organic particles in sludges. As a results, the optimal temperature and HRT were $60^{\circ}C$ and 5 days, respectively. HAc, HPr, HBr, and other VFAs for acid fermentations reduced up to 22, 16, 14, and 48% with HRT reduction. For the increase of solubilization, 28% of solids destruction rate was shown at 0.3 watts/mL.