• 제목/요약/키워드: Action potentials

검색결과 204건 처리시간 0.034초

Mechanotransduction in Cardiac Myocytes

  • Earm, Yung-E
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2001년도 학술 발표회 진행표 및 논문초록
    • /
    • pp.17-17
    • /
    • 2001
  • It is well known that myocardial stretch causes changes in electrical signalling and contractility of the heart. For example, mechanical stretch depolarises the membrane potential of cardiac cells and alters the shape of action potentials. As a result, these effects either accelerate the frequency of heart rate or induce arrhythmias of the heart.(omitted)

  • PDF

토끼 동방결절 박동수에 대한 아데노신의 작용 (Inhibitory action of adenosine on sinus rate in isolated rabbit SA node)

  • 채헌;서경필;김기환
    • Journal of Chest Surgery
    • /
    • 제16권2호
    • /
    • pp.199-212
    • /
    • 1983
  • The inhibition/influences of adenine compounds on the heart have been described repeatedly by many investigators, since the first report by Druny and Szent-Gyorgyi [1929]. These studies have shown that adenosine and adenine nucleotides have an over-all effect similar to that of acetylcholine [ACh] by slowing and weakening the heartbeat. The basic cellular and membrane events underlying the inhibitory action of adenosine on sinus rate, however, are not well understood. Furthermore, the physiological role of adenosine in regulation of the heartbeat remains still to be elucidated. Therefore, this study was undertaken in order to examine the response of rabbit SA node to adenosine and to compare the response to that of ACh. Isolated SA node preparation, whole atrial pair, or left atrlal strip was used in each experiment. Action potentials of SA node were recorded through the intracellular glass microelectrodes, which were filled with 3M KCI and had resistance of 30-50 M. All experiments were performed in a bicarbonate-buffered Tyrode solution which was aerated with 3% $CO_2-97%$ $O_2$ gas mixture and kept at $35^{\circ}C$. Spontaneous firing rate of SA node at 35C [Mean + SEM, n=16] was 154 + 3.3 beats/min. The parameters of action potentials were: maximum astolic potential [MDP], -731.7mV: overshoot [OS], 9 + 1.4mV; slope of pacemaker potential [SPP], 94 3.0mV/sec.Adenosine suppressed the firing rate of SA node in a dose dependent manner. This inhibitory effect appeared at the concentration of $10^{-6}M$ and was potentiated in parallel with the increase in adenosine concentration. Changes in action potential by adenosine were dose-dependent increase of MDP and decrease of SPP until $10^{-4}$. Above this concentration, however, the amplitude of action potential decreased markedly due to the simultaneous decrease of both MDP and OS. All these effects of adenosine were not affected by pretreatment of atropine [2mg/l] and propranolol [$5{\times}10^{-6}M$]. ACh [$10^{-6}M$] responses on action potential were similar to those of adenosine by increasing MDP and decreasing SPP. These effects of ACh disappeared by pretreatment of atropine [2mg/1]. Inhibition/effects of adenosine and ACh on sinus rate were enhanced synergistically with the simultaneous administration of adenosine and ACh. Marked decrease of overshoot potential was the most prominent feature on action potential. Dipyridamole [DPM], which is known to block the adenosine transport across cell membrane, definitely potentiated the action of adenosine . Adenosine suppressed the sinus rate and atrial contractility in the same dosage range, even in the reserpinized preparation. Above` results suggest that adenosine suppresses pacemaker activity, like ACh, by acting directly on the membrane of SA node, increasing MDP and decreasing SPP.

  • PDF

기후변화대응을 위한 미국 포틀랜드시 기후변화 실천계획의 주요 특성 분석에 관한 연구 (Analysis on Climate Action Plans of Portland, Oregon, USA)

  • 최준성
    • KIEAE Journal
    • /
    • 제13권3호
    • /
    • pp.3-13
    • /
    • 2013
  • As climate change is increasingly recognised as an important global problem, a wide variety of policies and measures are emerging at global and local level to deal with the challenges from the anthropogenic global warming. While national and inter-national efforts characterized by limiting GHG emissions shows very little progress because of their expanse spatial scale and complicated political situations, local efforts have the potentials to ensure effective implementation, monitoring and continual improvement. In the context of local-scale climate policy, the city of Portland is known as one of the best leading cities for its progress of implementing climate change strategies. This paper will briefly discuss the city's efforts to solve the climate change problem and its achievements. The latest climate action plan is selected for the analysis on the followings; the framework of the action plan, the types of implementation methods, and the coordinating agencies. The progress status of each action plans is also reviewed. The purpose of this paper is to describe the main characteristics of the climate action plans and their implications from the intensive analysis on the city of Portland's case.

Nitric Oxide (NO) Inhibites the Neuronal Activities in the Rat Nucleus Tractus Solitarius

  • Kim, Mi-Won;Park, Mun-Sung;Ryu, Sun-Youl;Jung, Ji-Yeon;Kim, Sun-Hun;Kim, Min-Seok;Kim, Won-Jae;Jeong, Yeon Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권1호
    • /
    • pp.7-15
    • /
    • 2004
  • Nitric oxide (NO) system has been implicated in a wide range of physiological functions in the nervous system. However, the role of NO in regulating the neural activity in the gustatory zone of nucleus tractus solitarius (NTS) has not been established. The present study was aimed to investigate the role of NO in the gustatory NTS neurons. Sprague-Dawley rats, weighing about 50 g, were used. Whole cell patch recording and immunohistochemistry were done to determine the electrophysiological characteristics of the rostral gustatory nucleus of the tractus solitaries and distribution of NO synthases (NOS). Neuronal NOS (nNOS) immunoreactivity was strongly detected along the solitary tract extending from rostral to caudal medulla. Resting membrane potentials of NTS neurons were $-49.2{\pm}2\;mV$ and action potential amplitudes were $68.5{\pm}2\;mV$ with a mean duration measured at half amplitude of $1.7{\pm}0.3\;ms$. Input resistance, determined from the response to a 150 ms, -100 pA hyperpolarizing current pulse, was $385{\pm}15\;M{\Omega}$, Superfusion of SNAP or SNP, NO donors, produced either hyperpolarization (68%), depolarization (5%), or no effect (27%). The hyperpolarization was mostly accompanied by a decrease in input resistance. The hyperpolarization caused by SNAP or SNP increased the time to initiate the first action potential, and decreased the number of action potentials elicited by current injection. SNP or SNAP also markedly decreased the number of firing neural discharges of the spontaneous NTS neural activity under zero current. Superfusion of L-NAME, a NOS inhibitor, slightly depolarized the membrane potential and increased the firing rate of NTS neurons induced by current injection. ODQ, a soluble guanylate cyclase inhibitor, ameliorated the SNAP-induced changes in membrane potential, input resistance and firing rates. 8-Br-cGMP, a non-degradable cell-permeable cGMP, hyperpolarized the membrane potential and decreased the number of action potentials. It is suggested that NO in the gustatory NTS has an inhibitory role on the neural activity of NTS through activating soluble guanylate cyclase.

전기자재에 대한 역돔의 심전도 (Response of Electrocardiogram of Nile tilapia, Oreochromis niloticus to Electric Stimulus)

  • 한규환;양용림
    • 수산해양기술연구
    • /
    • 제38권4호
    • /
    • pp.278-283
    • /
    • 2002
  • 전기자극에 대한 역돔, Oreochromis niloticus[Linnaeus]의 심전도를 구명하기 위하여, 어체내에 전극을 삽입하여 3 가지 전기자극원(20, 30, 40 Vp ; 10 msec)으로 실험어에 자극을 가하였을 때의 심전도를 서간과 야간으로 구분하여 60분간 조사한 심박수와 생체전위를 자극 전(마취상태, 안정상태)과 자극 후(자극-회복상태, 회복상태)로 구분하여 비교 분석한 결과는 다음과 같다. 1. 역돔은 마취 후 3 분 뒤에 안정상태에 도달하였고, 안정상태에서의 평균상심박수는 서간에 45.8 beat/min, 야간에 45.0 beat/min였고, 평균생체전위는 서간에 1.76 $\mu\textrm{V}$, 야간에 1.75 $\mu\textrm{V}$였다. 2. 자극별 평균심박수는 \circled1 자극-회복상태에서 전기자극이 20 Vp인 경우, 서간에 34.9 beat/min, 야간에 33.4 beat/min였고, 30 Vp인 경우, 서간에 36.8 beat/min, 야간에 36.0 beat/min였으며, 40Vp인 경우 서간에 38.0 beat/min, 야간에 36.4 beat/min로 나타났다. \circled2 회복상태에서 전기자극이 20 Vp인 경우, 서간에 45.5 beat/min, 야간에 45.1 beat/min였고, 30 Vp인 경우, 서간에 47.9 beat/min, 야간에 49.0 beat/min 였으며, 40 Vp인 경우, 서간에 51.4 beat/min, 야간에 50.7 beat/min로 나타났다. 3. 자극별 평균생체전위는 \circled1 자극-회복상태에서 전기자극이 20Vp인 경우, 서간에 2.54$\mu\textrm{V}$ 야간에 2.39$\mu\textrm{V}$였고,30Vp인 경우, 서간에 3.30$\mu\textrm{V}$, 야간에 2.30 $\mu\textrm{V}$였으며, 40Vp 인 경우 서간에 6.05 $\mu\textrm{V}$, 야간에 3.23 $\mu\textrm{V}$로 나타났다. \circled2 회복상태에서 전기자극이 20 Vp인 경우, 서간에 1.92 $\mu\textrm{V}$, 야간에 1.95 $\mu\textrm{V}$ 였고, 30 Vp인 경우, 서간에 2.78 $\mu\textrm{V}$, 야간에 2.21 $\mu\textrm{V}$ 였으며, 40 Vp인 경우 서간에 3.60$\mu\textrm{V}$ 야간에 2.98$\mu\textrm{V}$로 나타났다.

동작관찰훈련이 뇌졸중 환자의 손 조작능력에 미치는 영향 (The Effect of Action Observational Physical Training on Manual Dexterity in Stroke Patients)

  • 김종만;양병일;이문규
    • 한국전문물리치료학회지
    • /
    • 제17권2호
    • /
    • pp.17-24
    • /
    • 2010
  • The aim of this study was to determine the effect of action observational physical training (AOPT) on manual dexterity and corticomotor facilitation in stroke patients. Ten hemiparetic patients participated in this study. Each subject was asked to participate the three conditions; base condition (Base), physical training (PT), AOPT. Participants were asked to observe the action in the video that a therapist moved the blocks during the AOPT conditions. Corticomotor facilitation was determined in three conditions by monitoring changes in the amplitude of motor-evoked potentials (MEPs) elicited in hand muscles by transcranial magnetic stimulation. MEP responses were measured from the first dorsal interosseous after participants attended to three conditions. For the manual dexterity, Box and Block test (BBT) was used. The results of present study were summarized as follows: MEPs amplitude significantly tended to be larger than PT and Base condition. The scores of BBT in the AOPT condition were also significantly larger than other conditions. In conclusion, this finding of present study indicates that physical training for observation of an action is beneficial for enhancing a dexterity of paretic arm in stroke patients.

Rehmanniae Radix에 의한 가토 동방결절 및 유두근의 활동전압의 변동 (Effects of Ethanol Extract of Rehmanniae Radix(RREE) on Resting and Action Potential of Rabbit Sinoatrial Node and Papillary Muscle)

  • 황보상;고상돈;신홍기;김기순
    • The Korean Journal of Physiology
    • /
    • 제19권2호
    • /
    • pp.127-137
    • /
    • 1985
  • The present study was undertaken in order to investigate effect of ethanol extract of Rehmanniae radix(RREE) on electrophysiology of sinus node and papillary muscle. Rehmanniae radix is a herbal medicine which has been known to have diuretic, antipyretic, hemopoietic and cardiotonic effects. Action potentials were recorded by means of glass capillary microelectrode(technique) in rabbit sinoatrial nodal cells and papillary muscle cells which were superperfused with either tyrode solution or tyrode solutions containing different amount of RREE. The results obtained were as follows ; 1) In both central and peripheral nodal cells maximum diastolic potential (MDP) and amplitude of action potential (APA) were not affected by RREE. 2) Action potential duration as expressed $APD_{60}$(time to 60% repolarization) of central and peripheral pacemaker cells were significantly prolonged following perfusion with tyrode solution containing 0.1% RREE. 3) The rates of spontaneous firing from central pecemaker cell were decreased by RREE at concentration of 0.05% and 0. 1% while spontaneous rhythm of perinodal cell was decreased by 0.1% RREE. 4) The action potential duration of papillary muscle as expressed $APD_{60}$ were prolonged by 0.1% RREE.

  • PDF

인공와우 이식자의 역행성 청신경 복합활동전위 (Antidromic Electrically Compound Action Potential in Cochlear Implantees)

  • 허승덕;정성욱;정승현
    • 말소리와 음성과학
    • /
    • 제1권4호
    • /
    • pp.203-207
    • /
    • 2009
  • Electrically evoked compound action potentials (ECAP) have originated from the distal end of the auditory nerve. ECAP are characterized as the difference between the clearly large trough (N) and the following positive peak (P). N-wave occurs around $200-400\;{\mu}s$ after stimulus onset and P-wave at around $400-800\;{\mu}s$. Contrary to expectations, positive peaked ECAP (pp-ECAP) was dominated by a relatively large-amplitude positive following negative peak. pp-ECAP can be recorded from the sites on or near the surgically exposed nerve trunk in animal models and/or in cases of monophasic stimulation. This study will provide the causes of the appearance of pp-ECAP in cases of cochlear implant recipients using imaging studies and medical records and statistically analysis between N-P and P-N on the amplitude input-output function (amp-I/O) for the prediction of the possibilities of clinical tools. Thirteen children participated in the study and received a Cochlear CI-24RE (CA). ECAP was recorded using auto-NRT (Cochlear Ltd., Australia) at four to five weeks post surgery. pp-ECAP was measured from 36 electrodes and typical ECAP from 220 electrodes. There was no abnormality in the imaging study and operation finding in patients with typical ECAP. pp-ECAP was found at the inner ear anormaly and ossification in imaging study and gel-state inner ear fluid was observed in the operation finding. The amplitude of pp-ECAP increased depending on current intensities, but amp-I/O increase more gradually than in the case of typical ECAP (p=0.003). pp-ECAP is antidromic potential which can record from the inner ear anormaly and ossified cochlear. Amp-I/O also depends on current intensity as well typical ECAP. These results provide a useful tool for audiological evaluation for the spiral ganglion cell status to the value of pp-ECAP.

  • PDF

Near-Infrared Laser Stimulation of the Auditory Nerve in Guinea Pigs

  • Guan, Tian;Wang, Jian;Yang, Muqun;Zhu, Kai;Wang, Yong;Nie, Guohui
    • Journal of the Optical Society of Korea
    • /
    • 제20권2호
    • /
    • pp.269-275
    • /
    • 2016
  • This study has investigated the feasibility of 980-nm low-energy pulsed near-infrared laser stimulation to evoke auditory responses, as well as the effects of radiant exposure and pulse duration on auditory responses. In the experiments, a hole was drilled in the basal turn of the cochlea in guinea pigs. An optical fiber with a 980-nm pulsed infrared laser was inserted into the hole, orientating the spiral ganglion cells in the cochlea. To model deafness, the tympanic membrane was mechanically damaged. Acoustically evoked compound action potentials (ACAPs) were recorded before and after deafness, and optically evoked compound action potentials (OCAPs) were recorded after deafness. Similar spatial selectivity between optical and acoustical stimulation was found. In addition, OCAP amplitudes increased with radiant exposure, indicating a photothermal mechanism induced by optical stimulation. Furthermore, at a fixed radiant exposure, OCAP amplitudes decreased as pulse duration increased, suggesting that optical stimulation might be governed by the time duration over which the energy is delivered. Thus, the current experiments have demonstrated that a 980-nm pulsed near-infrared laser with low energy can evoke auditory neural responses similar to those evoked by acoustical stimulation. This approach could be used to develop optical cochlear implants.

Effects of Samchulkunbi-tang in Cultured Interstitial Cells of Cajal of Murine Small Intestine

  • Kim, Jung Nam;Kwon, Young Kyu;Kim, Byung Joo
    • 동의생리병리학회지
    • /
    • 제27권1호
    • /
    • pp.112-117
    • /
    • 2013
  • We studied the modulation of pacemaker activities by Samchulkunbi-tang (SCKB) in cultured interstitial cells of Cajal (ICC) from murine small intestine with the whole-cell patch-clamp technique. Externally applied SCKB produced membrane depolarization in the current-clamp mode. The pretreatment with $Ca^{2+}$-free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum, abolished the generation of pacemaker potentials and suppressed the SCKB-induced action. The application of flufenamic acid (a nonselective cation channel blocker) abolished the generation of pacemaker potentials by SCKB. However, the application of niflumic acid (a chloride channel blocker) did not inhibit the generation of pacemaker potentials by SCKB. In addition, the membrane depolarizations were inhibited by not only GDP-${\beta}$-S, which permanently binds G-binding proteins, but also U-73122, an active phospholipase C inhibitor. These results suggest that SCKB modulates the pacemaker activities by nonselective cation channels and external $Ca^{2+}$ influx and internal $Ca^{2+}$ release via G-protein and phospholipase C-dependent mechanism. Therefore, the ICC are targets for SCKB and their interaction can affect intestinal motility.