• 제목/요약/키워드: Action potential

검색결과 1,339건 처리시간 0.04초

전기자극에 의한 근 수축이 V wave와 중앙주파수에 미치는 영향 (The Effects of Muscle Contraction by Electrical Stimulation to V Wave and Median Frequency)

  • 문달주;정대인;이정우;정진규;김태열;오명화
    • 대한임상전기생리학회지
    • /
    • 제4권1호
    • /
    • pp.27-38
    • /
    • 2006
  • This study analyzed changes in action potential of supraspinal neuron and motor unit depending on maximum tolerance isometric contraction(MTIC) by electrical stimulation and examined influence of functional electrical stimulation (FES) on spinal neuron adaptation. It selected 40 university students in their twenties and divided into experimental groups of 25% MTIC(I), 50% MTIC I (II), 75% MTIC(III) and 100% MTIC(IV) depending on MTIC by electrical stimulation, and performed isometric contraction of plantar flexor muscle to each experimental group with given contraction for 20 times. It measured V/Mmax and MDF pre and post exercise, compared volume of contraction. 1. V/Mmax ratio showed no significant difference in comparison among experimental groups. 2. There was significant difference in median frequency of gastrocnemius and soleus in action potential motor unit according to comparison among experimental groups(p<.001). When contraction by electrical stimulation was maximum, change was greatest. This results suggest that muscle contraction by electrical stimulation was influence to action potential of spinal motor neuron system which appear optimal level though aspect and difference degree were not in accordance. Consequently, optimal stimulation level of MTIC(50%) by FES would be lead to central nerve adaptation. muscle contraction by electrical stimulation was influence highly to MDF which should be consider to fatigue of motor unit for muscle contraction by electrical stimulation.

  • PDF

The Role of $K^+$ Channels on Spontaneous Action Potential in Rat Clonal Pituitary $GH_3$ Cell Line

  • Rhim, Hye-Whon;Baek, Hye-Jung;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권2호
    • /
    • pp.81-90
    • /
    • 2000
  • The types of $K^+$ channel which determine the pattern of spontaneous action potential (SAP) were investigated using whole-cell variation of patch clamp techniques under current- and voltage-clamp recording conditions in rat clonal pituitary $GH_3$ cells. Heterogeneous pattern of SAP activities was changed into more regular mode with elongation of activity duration and afterhyperpolarization by treatment of TEA (10 mM). Under this condition, exposure of the class III antiarrhythmic agent E-4031 $(5\;{\mu}M)$ to $GH_3$ cells hardly affected SAP activities. On the other hand, the main $GH_3$ stimulator thyrotropin-releasing hormone (TRH) still produced its dual effects (transient hyperpolarization and later increase in SAP frequency) in the presence of TEA. However, addition of $BaCl_2$ (2 mM) in the presence of TEA completely blocked SAP repolarization process and produced membrane depolarization in all tested cells. This effect was observed even in TEA-untreated cells and was not mimicked by higher concentration of TEA (30 mM). Also this barium-induced membrane depolarization effect was still observed after L-type $Ca^{2+}$ channel was blocked by nicardipine $(10\;{\mu}M).$ These results suggest that barium-sensitive current is important in SAP repolarization process and barium itself may have some depolarizing effect in $GH_3$ cells.

  • PDF

토끼 동방결절 부위에 따른 Na-Pump활동도의 차이에 관한 연구 (Local Difference of Na-Pump Activity in the Rabbit Sinoatrial Node)

  • 서종진;문형로;엄융의
    • The Korean Journal of Physiology
    • /
    • 제19권2호
    • /
    • pp.113-125
    • /
    • 1985
  • Electrophysiological difference of the central and peripheral area of the sinoatrial node in the rabbit was studied by glass microelectrode technique. Effects of $K^+,\;Na^+,\;Cs^+,$ adrenaline and ouabain on the action potential of the two areas were investigated, and transient hyperpolarization ($K^+-induced$ hyperpolarization) which developed following readmission of potassium after having pre-treated with $K^+-free$ Tyrode solution for 10 minutes was analyzed. The results obtained were as follows ; 1) The frequency of the spontaneous action potential recorded in the periphery of the SA node was faster than the central area. Reduction by $Cs^+$ and increase by O mM $K^+$, $10^{-6}M$ adrenaline and $10^{-6}M$ ouabain in the frequency of action potential were noticed more prominently in the peripheral than the central area. On the contrary, the frequency in the central area was more decreased than the Peripheral area by 13 mH $K^+$ and 1 mM $Co^{2+}$. 2) The amplitude of the K+_induced hyperpolarization was very small in the central area but large in the peripheral area. Transient hyperpolarization was abolished by ouabain and low sodium, and decreased by cooling the tissue $(17^{\circ}C)$. 3) By changing the concentration of $Ca^{2+}$ in the perfusate, the amplitude and the rate of transient hyperpolarization were increased in the high $Ca^{2+}$ concentration. It could be concluded that the central area of the SA node is less susceptible to the inhibition of Na-Pump and more susceptible to Ca-blocker and high concentration of $K^+$. The Na-Pump activity of the central area measured by means of transient hyperpolarization is found to be much less active than that of the peripheral area.

  • PDF

Effects of Paroxetine on a Human Ether-a-go-go-related Gene (hERG) K+ Channel Expressed in Xenopus Oocytes and on Cardiac Action Potential

  • Hong, Hee-Kyung;Hwang, Soobeen;Jo, Su-Hyun
    • International Journal of Oral Biology
    • /
    • 제43권1호
    • /
    • pp.43-51
    • /
    • 2018
  • $K^+$ channels are key components of the primary and secondary basolateral $Cl^-$ pump systems, which are important for secretion from the salivary glands. Paroxetine is a selective serotonin reuptake inhibitor (SSRI) for psychiatric disorders that can induce QT prolongation, which may lead to torsades de pointes. We studied the effects of paroxetine on a human $K^+$ channel, human ether-a-go-go-related gene (hERG), expressed in Xenopus oocytes and on action potential in guinea pig ventricular myocytes. The hERG encodes the pore-forming subunits of the rapidly-activating delayed rectifier $K^+$ channel ($I_{Kr}$) in the heart. Mutations in hERG reduce $I_{Kr}$ and cause type 2 long QT syndrome (LQT2), a disorder that predisposes individuals to life-threatening arrhythmias. Paroxetine induced concentration-dependent decreases in the current amplitude at the end of the voltage steps and hERG tail currents. The inhibition was concentration-dependent and time-dependent, but voltage-independent during each voltage pulse. In guinea pig ventricular myocytes held at $36^{\circ}C$, treatment with $0.4{\mu}M$ paroxetine for 5 min decreased the action potential duration at 90% of repolarization ($APD_{90}$) by 4.3%. Our results suggest that paroxetine is a blocker of the hERG channels, providing a molecular mechanism for the arrhythmogenic side effects of clinical administration of paroxetine.

가압훈련의 혈류 압박 정도에 따른 복합근 활동전위의 변화 (Changes in Compound Muscle Action Potential Depending on Pressure Level of Blood Flow During KAATSU Training)

  • 김종순
    • PNF and Movement
    • /
    • 제18권3호
    • /
    • pp.393-401
    • /
    • 2020
  • Purpose: In recent years, there has been increasing interest in using blood flow-restricted exercise (BFRE) or KAATSU training. The KAATSU training method, which partially restricts arterial inflow and fully restricts venous outflow in the working musculature during exercise at reduced exercise intensities, has been proven to result in substantial increases in both muscle hypertrophy and strength. The purpose of this study was to investigate the proper level of pressure for KAATSU training using compound muscle action potential (CMAP) analysis. Methods: Twenty-two healthy adults voluntarily participated in this study. CMAP was conducted by measuring the terminal latency and amplitude using a motor nerve conduction velocity test. For reference-line, supramaximal electrical stimulation was applied to the median nerves of the participants to obtain CMAP for the abductor pollicis brevis. For baseline, the intensity of the electrical stimulation was decreased to a level at which the CMAP amplitude was about a third of the CMAP amplitude obtained by the supramaximal electrical stimulation. The pressure levels for the KAATSU were set as a systolic blood pressure (strong pressure), the median values of systolic and diastolic blood pressure (intermediate pressure), and diastolic blood pressure (weak pressure). In the KAATSU condition, CMAP was performed under the same conditions as baseline after low-intensity thumb abduction exercises were performed at the subjects' own pace for one minute. Results: As the pressure increased, the CMAP amplitude was significantly increased, signifying that more muscle fibers were recruited. Conclusion: This study found that KAATSU training recruited more muscle fibers than low-intensity exercise without the restriction of blood flow.

동방결절 활동전압에 대한 아데노신 효과 (Effects of Adenosine on the Action Potentials of Rabbit SA Nodal Cells)

  • 김기환;호원경
    • The Korean Journal of Physiology
    • /
    • 제18권1호
    • /
    • pp.19-35
    • /
    • 1984
  • Since the first report of Drury and $Szent-Gy{\ddot{o}}rgyi$ in 1929, the inhibitory influences of adenosine on the heart have repeatedly been described by many investigators. These studies have shown that adenosine and adenine nucleotides have overall depressant effects, similar to those of acetylcholine. Heart beats become slow and weak. It is also well known that adenosine is a potent endogenous coronary vasodilator. Many investigations on the working mechanisms of adenosine have been focused mainly on the effects of the coronary blood flow. However, the cellular mechanisms underlying the inhibitory action of adenosine on sinus node are not well understood yet. Thus, this study was undertaken to examine the behavior of rabbit SA node under influence of adenosine. In these series of experiments three kinds of preparations were used: whole atrial pair, left atrial strip, and isolated SA node preparations. The electrical activity of SA node was recorded with conventional glass microelectrodes 30 to 50 $M{\Omega}$. The preparations were superfused with bicarbonate-buffered Tyrode solution of pH 7.35 and aerated with a gas mixture of $3%\;CO_2-97%\;O_2$ at $35^{\circ}C$. In whole atrial pair, adenosine suppressed sinoatrial rhythm in a dose-dependent manner. Effect of adenosine on atrial rate appeared at the concentration of $10^{-5}M$ and was enhanced in parallel with the increase in adenosine concentration. Inhibitory action of adenosine on pacemaker activity was more prominent in the preparation pretreated with norepinephrine, which can steepen the slope of pacemaker potential by increasing permeability of $Ca^{+2}$. Calcium ions in perfusate slowly produced a marked change in sinoatrial rhythm. Elevation of the calcium concentration from 0.3 to 8 mM increased the atrial rate from 132 to 174 beats/min, but over 10 mM $Ca^{+2}$ decreased. The inhibitory effect of adenosine on sinoatrial rhythm developed very rapidly. Atrial rate was recovered promptly from the adenosine-induced suppression by the addition of norepinephrine, but extra $Ca^{+2}$ was less suitable to restore the suppression of atrial rate. Adenosine suppressed also atrial contractility in the same dosage range that restricted pacemaker activity, even in the reserpinized preparation. In isolated SA node preparation, spontaneous firing rate of SA node at $35^{\circ}C$(mean{\pm}SEM, n=16) was $154{\pm}3.3\;beats/min. The parameters of action potentials were: maximum diastolic potential(MDP), $-73{\pm}1.7\;mV: overshoot(OS), $9{\pm}1.4\;mV: slope of pacemaker potential(SPP), $94{\pm}3.0\;mV/sec. Adenosine suppressed the firing rate of SA node in a dose-dependent manner. This inhibitory effect appeared at the concentration of $10^{-6}M$ and was in parallel with the increase in adenosine concentration. Changes in action potential by adenosine were dose-dependent increase of MDP and decrease of SPP until $10^{-4}M$. Above this concentration, however, the amplitude of action potential decreased markedly due to the simultaneous decrease of both MDP and OS. All these effects of adenosine were not affected by pretreatment of atropine and propranolol. Lowering extra $Ca^{2+}$ irom 2 mM to 0.3 mM resulted in a marked decrease of OS and SPP, but almost no change of MDP. However, increase of perfusate $Ca^{2+}$ from 2 mM to 6 or 8 mM produced a prominent decrease of MDP and a slight increase of OS and SPP. Dipyridamole(DPM), which is known to block the adenosine transport across the cell membrane, definately potentiated the action of adenosine. The results of this experiment suggest that adenosine suppressed pacemaker activity and atrial contractility simultaneously and directly, by decreasing $Ca^{2+}-permeability$ of nodal and atrial cell membranes.

  • PDF

다채널 전극을 이용한 초음파 자극 시 쥐 해마 신경 세포의 활동 전위 검출 (Modulation in Action Potentials of Rat Hippocampal Neurons Measured on Multi-Channel Electrodes During Ultrasound Stimulation)

  • 한희석;전현재;황서영;이예나;변경민;전상범;김태성
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권4호
    • /
    • pp.177-181
    • /
    • 2013
  • It is known that ultrasound affects action potentials in neurons, but the underlying principles of ultrasonic neural stimulation are not clearly elucidated yet. In this study, we measured the action potentials of rat hippocampal neurons cultured on multi-electrode arrays during ultrasound stimulation. From most of electrodes, it was observed that the ultrasound stimulation increased the frequencies of action potentials (i.e., spikes) during ultrasound stimulation.

체장에 따른 향어, Cyprinus carpio의 심전도 (Response of Electrocardiogram to Mirror carp, Cyprinus carpio of Body Length)

  • 김영기;양용림;안영일
    • 수산해양기술연구
    • /
    • 제38권4호
    • /
    • pp.284-288
    • /
    • 2002
  • 향어, Cyprinus carpio [Linnaeus]의 체장에 따른 심전도를 구명하기 위하여, 어체내에 전극을 삽입하여 3가지 체장 범위 (10~15, 15~20, 20~25cm)에서의 심전도를 주간과 야간으로 구분하여, 16~18$^{\circ}C$ 수온에서 30분간 조사한 심박수와 생체전위를 마취상태와 안정상태로 구분비교 분석한 결과는 다음과 같다. 1 체장이 10~15 cm인 경우, 마비상태 (0~9분)에서의 평균심박수는 주간에 43.4 beat/min, 야간에 45.9 beat/min였고, 평균생체전위는 주간에 4.38 $\mu\textrm{V}$, 야간에 3.64 $\mu\textrm{V}$로 나타났으며, 안정상태 (9~30분)에서의 평균심박수는 주간에 69.4 beat/min, 야간에 67.4 beat/min였고, 평균생체전위는 주간에 3.82 $\mu\textrm{V}$, 야간에 3.50 $\mu\textrm{V}$로 나타났다. 2 체장이 15~20cm인 경우, 마비상태 (0~5분)에서의 평균심박수는 주간에 42.2 beat/min, 야간에 45.4 beat/min였고, 평균생체전위는 주간에 4.13 $\mu\textrm{V}$, 야간에 3.95 $\mu\textrm{V}$로 나타났으며, 안정상태(5~30분)에서의 평균심박수는 주간에 67.6 beat/min, 야간에 65.3 beat/min였고, 평균생체전위는 주간에 4.58 $\mu\textrm{V}$, 야간에 4.61 $\mu\textrm{V}$로 나타났다. 3. 체장이 20~25 cm인 경우, 마비상태(0~4분)에서의 평균심박수는 주간에 47.5 beat/min, 야간에 47.5 beat/min였고, 평균생체전위는 주간에 4.81 $\mu\textrm{V}$, 야간에 4.20 $\mu\textrm{V}$로 나타났으며, 안정상태(4~30분)에서의 평균심박수는 주간에 67.5 beat/min, 야간에 64.8 beat/min였고, 평균생체전위는 주간에 5.31 $\mu\textrm{V}$, 야간에 4.90 $\mu\textrm{V}$로 나타났다.

신경근육 접합부의 종판 폭과 분포에 따른 운동단위 수의 추정에 관한 연구 (A Study on Estimation of Numbers of Motor Unit related to the Widths and Distribution of Endplate in Neuromuscular Junction)

  • 이호용;김덕영;박중호;정철기;김성환
    • 전자공학회논문지SC
    • /
    • 제48권5호
    • /
    • pp.81-92
    • /
    • 2011
  • 본 논문에서는 표면 근전도(surface electromyogram : SEMG)와 근육모델링을 이용하여 신경근육 접합부(neuromuscular junction, NMJ)의 종판(end plate) 폭(widths)과 분포(distribution)에 따른 운동단위(motor unit, MU)수를 추정하는 새로운 방법을 제안하였다. 이를 위하여 MU-시뮬레이터(motor unit simulator)와 EPZ-시뮬레이터(end plate zone simulator)를 설계하고, 본 연구에서 제안된 방법과 기존방법들을 비교하였다. 제안된 MU-시뮬레이터로 시뮬레이션 된 SMUAP(single motor unit action potential : 단일운동단위활동전위)와 CMAP(compound muscle action potential : 복합근활동전위)은 검출된 근신호와 유사하였다. EPZ-시뮬레이터는 신경근육 접합부의 종판 폭과 분포를 바꾸어 가면서 운동단위수를 추정하기 위하여 설계하였다. 실험결과 운동단위 수는 약 450 개, 근섬유수 약 340 개, 종판 폭은 약 6 mm이고, 종판분포는 불규칙하게 분포된 것 (randomly distributed)으로 추정되었다. 본 연구에서 제안된 방법은 인간 근육의 생체조직검사로 측정한 운동단위의 수와 비교 가능한 결과가 나왔다.

손상된 흰쥐의 좌골신경에 저출력 레이저 조사후 전기생리학적 변화 (Electrophysiological Changes after Low-Power Infrared Laser Irradiation on Injured Rat Sciatic Nerves)

  • 배춘식;신수범;김권영
    • 생명과학회지
    • /
    • 제16권1호
    • /
    • pp.114-119
    • /
    • 2006
  • 저출력 적외선 레이저가 손상된 말초신경의 재생에 미치는 영향을 알아보기 위하여 흰쥐의 양측 좌골신경에 압궤손상을 준 뒤, 레이저 조사 기간에 따라 1, 3, 5 및 7주군으로 나누어 손상된 좌골신경의 신경전도속도와 진폭을 측정하여 신경재생의 정도를 관찰한 결과는 다음과 같았다. 좌골신경전도속도 검사에서 압궤손상 유발후에 손상전보다 유의하게 전도속도가 지연되었으나, 레이저를 조사한 실험측은 치료후 3주에 현저하게 신경전도 속도가 증가하였다. 좌골신경 진폭 검사에서 압궤손상 유발후에 손상전보다 유의하게 진폭이 감소하였으나, 레이저를 조사한 실험측은 치료후 3주에 복합근 활동전위의 진폭이 유의하게 증가하였다. 이상의 결과로 보아, 저출력 레이저 조사는 손상된 좌골신경의 기능회복에 있어, 주로 손상 초기의 회복속도에 영향을 주는 것으로 생각되는 바, 향후 말초신경 손상의 재활치료에 고려해야 할 것으로 생각된다.