• 제목/요약/키워드: Actin-binding protein

검색결과 68건 처리시간 0.027초

Knockdown of Archvillin by siRNA Inhibits Myofibril Assembly in Cultured Skeletal Myoblast

  • Lee, Yeong-Mi;Kim, Hyun-Suk;Choi, Jun-Hyuk;Choi, Jae-Kyoung;Joo, Young-Mi;Ahn, Seung-Ju;Min, Byung-In;Kim, Chong-Rak
    • 대한의생명과학회지
    • /
    • 제13권4호
    • /
    • pp.251-261
    • /
    • 2007
  • A myofiber of skeletal muscle is composed of myofibrils, sarcolemma (plasma membrane), and constameres, which anchor the myofibrils to the sarcolemma. Achvillin is a recently identified F-actin binding muscle protein, co-isolates with dystrophin and caveolin-3 in low-density sarcolemma of striated muscle, and colocalizes with dystrophin at costameres, the specialized adhesion sites in muscle. Archvillin also binds to nebulin and localizes at myofibrillar Z-discs, the lateral boundaries of the sarcomere in muscle. However other roles of archvillin on the dynamics of myofibrillogenesis remain to be defined. The goal of this study is, by using siRNA-mediated gene silencing technique, to investigate the effect of archvillin on the dynamics of myofibrillogenesis in cell culture of a mouse skeletal myogenic cell line (C2C12), where presumptive myoblasts withdraw from the cell cycle, fuse, undergo de novo myofibrillogenesis, and differentiate into mature myotubes. The roles of archvillin in the assembly and maintenance of myofibril and during the progression of myofibrillogenesis induced in skeletal myoblast following gene silencing in the cell culture were investigated. Fluorescence microscopy demonstrated that the distribution of archvillin was changed along the course of myofibril assembly with nebulin, vinculin and F-actin and then located at Z-lines with nebulin. Fluorescence microscopy demonstrated that knockdown of mouse archvillin expression led to an impaired assembly of new myofibrillar clusters and delayed fusion and myofibrillogenesis although the mouse archvillin siRNA did not affect those expressions of archvillin binding proteins, such as nebulin and F-actin. This result is corresponded with that of RT-PCR and western blots. When the perturbed archvillin was rescued by co-transfection with GFP or Red tagged human archvillin construct, the inhibited cell fusion and myotube formation was recovered. By using siRNA technique, archvillin was found to be involved in early stage of myofibrillogenesis. Therefore, the current data suggest the idea that archvillin plays critical roles on cell fusion and dynamic myofibril assembly.

  • PDF

TATA box binding protein and ribosomal protein 4 are suitable reference genes for normalization during quantitative polymerase chain reaction study in bovine mesenchymal stem cells

  • Jang, Si-Jung;Jeon, Ryoung-Hoon;Kim, Hwan-Deuk;Hwang, Jong-Chan;Lee, Hyeon-Jeong;Bae, Seul-Gi;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권12호
    • /
    • pp.2021-2030
    • /
    • 2020
  • Objective: Quantitative polymerase chain reaction (qPCR) has been extensively used in the field of mesenchymal stem cell (MSC) research to elucidate their characteristics and clinical potential by normalization of target genes against reference genes (RGs), which are believed to be stably expressed irrespective of various experimental conditions. However, the expression of RGs is also variable depending on the experimental conditions, which may lead to false or contradictory conclusions upon normalization. Due to the current lack of information for a clear list of stable RGs in bovine MSCs, we conducted this study to identify suitable RGs in bovine MSCs. Methods: The cycle threshold values of ten traditionally used RGs (18S ribosomal RNA [18S], beta-2-microglobulin [B2M], H2A histone family, member Z [H2A], peptidylprolyl isomerase A [PPIA], ribosomal protein 4 [RPL4], succinate dehydrogenase complex, subunit A [SDHA], beta actin [ACTB], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], TATA box binding protein [TBP], and hypoxanthine phosphoribosyltrasnfrase1 [HPRT1]) in bovine bone marrow-derived MSCs (bBMMSCs) were validated for their stabilities using three types of RG evaluation algorithms (geNorm, Normfinder, and Bestkeeper). The effect of validated RGs was then verified by normalization of lineage-specific genes (fatty acid binding protein 4 [FABP4] and osteonectin [ON]) expressions during differentiations of bBMMSCs or POU class 5 homeobox 1 (OCT4) expression between bBMMSCs and dermal skins. Results: Based on the results obtained for the three most stable RGs from geNorm (TBP, RPL4, and H2A), Normfinder (TBP, RPL4, and SDHA), and Bestkeeper (TBP, RPL4, and SDHA), it was comprehensively determined that TBP and RPL4 were the most stable RGs in bBMMSCs. However, traditional RGs were suggested to be the least stable (18S) or moderately stable (GAPDH and ACTB) in bBMMSCs. Normalization of FABP4 or ON against TBP, RPL4, and 18S presented significant differences during differentiation of bBMMSCs. However, although significantly low expression of OCT4 was detected in dermal skins compared to that in bBMMSCs when TBP and RPL4 were used in normalization, normalization against 18S exhibited no significance. Conclusion: This study proposes that TBP and RPL4 were suitable as stable RGs for qPCR study in bovine MSCs.

선조체에서 3-nitropropionic acid 투여 후 calponin 3의 발현 연구 (Expression of Calponin 3 in the Striatum Following 3-Nitropropionic Acid-induced Neurotoxicity)

  • 최윤식
    • 생명과학회지
    • /
    • 제23권1호
    • /
    • pp.125-130
    • /
    • 2013
  • Calponin 3는 F-actin과 결합하는 단백질로 신경계의 가소성과 시냅스 활성을 조절하는데 중요한 역할을 하는 것으로 알려져 있다. 평활근과 심장근에 발현되는 calponin 1과 calponin 2와는 다르게 calponin 3는 뇌 조직에 많이 발현되어 있는 것으로 보고되고 있다. 본 연구는 마우스에서 3-nitropropionic acid를 투여하여 선조체에 비가역적 신경 손상을 주었을 때 calponin 3의 발현 양상을 알아보기 위하여 진행되었다. 본 연구 결과 3-nitropropionic acid를 마우스에 투여하였을 때 선조체에서 신경조직의 괴사가 일어남을 관찰하였으며 calponin 3는 약물 투여 후 1.5일부터 서서히 발현되는 것을 확인하였다. 특히, calponin 3는 신경조직의 괴사가 일어나는 부위의 주변부에서 발현되는 것을 확인하였으며 형광 이중면역 염색법으로 확인한 결과 GFAP를 발현하는 별아교세포에서 발현됨을 최초로 밝혔다. 따라서, calponin 3가 3-nitropropionic acid의 독성에 저항성을 나타내는 부위에서 별아교세포에서만 특이적으로 발현되는 것으로 보아 calponin 3는 별아교세포에 의한 신경아교증에 중요한 역할을 하는 것으로 추측된다.

Raf 신호에 의한 초파리 fascin의 조절 (Regulation of the Drosophila Fascin by Raf Signaling)

  • 표정훈;최나현;이신해;김영신;유미애
    • 생명과학회지
    • /
    • 제19권7호
    • /
    • pp.866-870
    • /
    • 2009
  • Fascin은 액틴결합 단백질로 형성을 포함한 많은 발생과정에 있어서 중요한 역할을 한다. Fascin은 암세포에 대한 생체표지인자로도 잘 알려져 있다. 그러나 이러한 fascin 유전자의 발현조절기전은 현재까지 잘 알려져있다. 그러나 이러한 fascin 유전자의 발현조절기전은 현재까지 잘 알려져 있지 않다. 본 연구에서는 Raf 돌연변이 초파리에서 이미 보고 되어있는 초파리 fascin 돌연변이 초파리의 휘어진 등털 표현형을 관찰함으로써 초파리 fascin 유전자의 발현이 Raf신호체계에 의해 조절되는 가를 조사하였다. RT-PCR과 Western blot의 실험 방법으로 Raf 유전자 돌연변이 초파리에서 fascin의 발현이 감소되어 있는 것을 확인하였으며, GAL4-UAS계로 Raf를 과발현시킨 초파리에서 fascin 발현이 증가하는 것을 확인할 수 있었다. 또한 세포의 증식과 이동 연구모델계로 잘 알려져 있는 초파리의 혈액세포에서 이러한 조절기전을 확인하였다. 이러한 결과들은 fascin유전자의 발현이 Raf 신호체계에 의해 조절된다는 것을 나타낸다.

cDNA microarray에 의한 치주인대세포의 광물화 결절형성에 관여하는 유전자들의 분석 (Identification of Matrix Mineralization-Related Genes in Human Periodontal Ligament Cells Using cDNA Microarray)

  • 신재희;박진우;여신일;노우창;김문규;김정철;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제37권sup2호
    • /
    • pp.447-463
    • /
    • 2007
  • 치주인대세포는 시험관적 실험에서 광물화 결절형성을 유도할 수 있으므로 광물화 결절형성에 관여하는 유전자들을 특이하게 발현할 것으로 여겨진다. 이에 본 실험은 cDNA microarray를 이용한 동시 유전자분석을 시행하여 치주인대세포의 분화에 의한 광물화 결절형성시 나타나는 유전자의 특징적 발현 양상을 알아보고자 하였다. 교정치료를 목적으로 경북대학교병원에 내원한 환자의 제일소구치를 발치하여 통상적 방법으로 치주인대세포를 분리, 배양하였고, 3세대의 치주인대세포를 사용하여 실험을 시행하였다. 치주인대세포를 100mm 배양접시에 넣고 배양하여 매 2일 마다 배지를 교환해 주고, 10% FBS만을 투여한 대조군으로, ascorbic acid $(50\;{\mu}g/ml)$, ${\beta}-glycerophosphate$ (10 mM) 및 100 nM dexamethasone을 투여한 군을 실험군으로 하였다. 배양된 치주인대세포에 ascorbic acid, ${\beta}-glycerophosphate$, 그리고 dexamethasone을 투여한 실험군에서 21일째 광물화된 결정을 관찰할 수 있었으나 대조군에서는 관찰할 수 없었다. 3063개의 유전자를 분석한 결과 35개 유전자가 대조군에 비해 2배이상 발현이 증가하였고, 38개 유전자는 2배이상 발현이 감소하였다. 형태학적 검사에서 보여준 바와 같이 광물화 형성과정시 관여하는 JGF-2과 IGFBP2와 같은 유전자가 실험군에서 증가하였으며, 세포골격과 세포외기질 형성에 관여하는 proteogycan 1, fibulin-5, keratin 5, ${\beta}-actin$, ${\alpha}-smooth$ muscle actin, capping protein 등도 발현이 실험군에서 증가하였다. 한편 periostin and S100 calcium-binding protein A4는 대조군에서 오히려 높게 나타나므로 이는 배양된 치주인대세포가 그 자체의 표현형을 유지하고 있음을 보여 주고 있다. 그 외 apoptosis를 유발시키는데 관여하는 Dkk-1와 Nip3는 실험군에서 높게 발현되었고, apoptosis를 억제시키는데 관여하는 Btf와 TAX1BP1는 오히려 낮게 발현됨을 알 수 있으므로 이는 실험군에서 치주인대세포가 골아세포로의 분화되었음을 나타낸다.

Human Intersectin 2 (ITSN2) binds to Eps8 protein and enhances its degradation

  • Ding, Xiaofeng;Yang, Zijian;Zhou, Fangliang;Hu, Xiang;Zhou, Chang;Luo, Chang;He, Zhicheng;Liu, Qian;Li, Hong;Yan, Feng;Wang, Fangmei;Xiang, Shuanglin;Zhang, Jian
    • BMB Reports
    • /
    • 제45권3호
    • /
    • pp.183-188
    • /
    • 2012
  • Participates in actin remodeling through Rac and receptor endocytosis via Rab5. Here, we used yeast two-hybrid system with Eps8 as bait to screen a human brain cDNA library. ITSN2 was identified as the novel binding factor of Eps8. The interaction between ITSN2 and Eps8 was demonstrated by the in vivo co-immunoprecipitation and colocalization assays and the in vitro GST pull-down assays. Furthermore, we mapped the interaction domains to the region between amino acids 260-306 of Eps8 and the coiled-coil domain of ITSN2. In addition, protein stability assays and immunofluorescence analysis showed ITSN2 overexpression induced the degradation of Eps8 proteins, which was markedly alleviated with the lysosome inhibitor NH4Cl treatment. Taken together, our results suggested ITSN2 interacts with Eps8 and stimulates the degradation of Eps8 proteins.

Anti-Inflammatory and Anti-Fibrotic Activities of Nocardiopsis sp. 13G027 in Lipopolysaccharides-Induced RAW 264.7 Macrophages and Transforming Growth Factor Beta-1-Stimulated Nasal Polyp-Derived Fibroblasts

  • Choi, Grace;Kim, Geum Jin;Choi, Hyukjae;Choi, Il-Whan;Lee, Dae-Sung
    • 한국미생물·생명공학회지
    • /
    • 제49권4호
    • /
    • pp.543-551
    • /
    • 2021
  • Nocardiopsis species produce bioactive compounds, such as antimicrobial and anti-cancer agents and toxins. However, no reports have described their anti-inflammatory and anti-fibrotic effects during nasal polyp (NP) formation. In this study, we investigated whether marine-derived bacterial Nocardiopsis sp. 13G027 exerts anti-inflammatory and anti-fibrotic effects on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and transforming growth factor (TGF)-β1-induced NP-derived fibroblasts (NPDFs). Nitric oxide (NO) and prostaglandin E2 (PGE2) levels were analyzed. Extract from Nocardiopsis sp. 13G027 significantly inhibited the upregulation of NO and PGE2 in LPS-activated RAW 264.7 macrophages. The expression of mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt/PKB) in LPS-induced RAW 264.7 macrophages was evaluated; smooth muscle alpha-actin (α-SMA), collagen type I (Col-1), and fibronectin also phosphorylated small mothers against decapentaplegic (SMAD) 2 and 3 in TGF-β1-stimulated NPDFs. The Nocardiopsis sp. 13G027 extract suppressed the phosphorylation of MAPKs and Akt and the DNA-binding activity of activator protein 1 (AP-1). The expression of pro-fibrotic components such as α-SMA, Col-1, fibronectin, and SMAD2/3 was inhibited in TGF-β1-exposed NPDFs. These findings suggest that Nocardiopsis sp. 13G027 has the potential to treat inflammatory disorders, such as NP formation.

Gene Expression Analysis of Megakaryocytes Derived from Human Umbilical Cord $CD34^+$ Cells by Thrombopoietin

  • Kim, Jeong-Ah;Kim, Hyung-Lae
    • Genomics & Informatics
    • /
    • 제3권1호
    • /
    • pp.8-14
    • /
    • 2005
  • Although much is known about the molecular biology of platelets, the megakaryocytes' (MKs) molecular biology was not understood so well because of their rareness. By the cloning and characterization of thrombopoietin (TPO), which is the principal regulator of the growth and development of the MKs, researches on the MKs have been growing rapidly. To understand megakaryocytopoiesis, we investigated the gene expression profile of the MKs using oligonucleotide microarray where 10,108 unique genes were spotted. Comparing the fluorescence intensities of which ratio is $\ge$ ${\mid}2{\mid}$, 372 genes were up-regulated and 541 genes were down-regulated in MKs. For confirmatory expression, RNase protection assay (RPA) establishing abundant apoptotic gene expression was carried out. In MKs, many of the known genes, including several platelet related genes, GATA binding protein were highly expressed. Particularly, TGF beta, clusterin (complement lysis inhibitor), and thymosin beta 4 (actin-sequestering molecules) were expressed highly in MKs. As MKs specific expressed genes may regulate normal and pathologic platelet (and/or MK) functions, the transcript profiling using microarray was useful on molecular understanding of MKs,

A Proteomic Screen for Presynaptic Terminal N-type Calcium Channel (CaV2.2) Binding Partners

  • Khanna, Rajesh;Zougman, Alexandre;Stanley, Elise F.
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.302-314
    • /
    • 2007
  • N type calcium channels (CaV2.2) play a key role in the gating of transmitter release at presynaptic nerve terminals. These channels are generally regarded as parts of a multimolecular complex that can modulate their open probability and ensure their location near the vesicle docking and fusion sites. However, the proteins that comprise this component remain poorly characterized. We have carried out the first open screen of presynaptic CaV2.2 complex members by an antibody-mediated capture of the channel from purified rat brain synaptosome lysate followed by mass spectroscopy. 589 unique peptides resulted in a high confidence match of 104 total proteins and 40 synaptosome proteome proteins. This screen identified several known CaV2.2 interacting proteins including syntaxin 1, VAMP, protein phosphatase 2A, $G_{o\alpha}$, G$\beta$ and spectrin and also a number of novel proteins, including clathrin, adaptin, dynamin, dynein, NSF and actin. The unexpected proteins were classified within a number of functional classes that include exocytosis, endocytosis, cytoplasmic matrix, modulators, chaperones, and cell-signaling molecules and this list was contrasted to previous reports that catalogue the synaptosome proteome. The failure to detect any postsynaptic density proteins suggests that the channel itself does not exhibit stable trans-synaptic attachments. Our results suggest that the channel is anchored to a cytoplasmic matrix related to the previously described particle web.

Mycoplasma exploits mammalian tunneling nanotubes for cell-to-cell dissemination

  • Kim, Bong-Woo;Lee, Jae-Seon;Ko, Young-Gyu
    • BMB Reports
    • /
    • 제52권8호
    • /
    • pp.490-495
    • /
    • 2019
  • Using tunneling nanotubes (TNTs), various pathological molecules and viruses disseminate to adjacent cells intercellularly. Here, we show that the intracellular invasion of Mycoplasma hyorhinis induces the formation of actin- and tubulin-based TNTs in various mammalian cell lines. M. hyorhinis was found in TNTs generated by M. hyorhinis infection in NIH3T3 cells. Because mycoplasma-free recipient cells received mycoplasmas from M. hyorhinis-infected donor cells in a mixed co-culture system and not a spatially separated co-culture system, direct cell-to-cell contact via TNTs was necessary for the intracellular dissemination of M. hyorhinis. The activity of Rac1, which is a small GTP binding protein, was increased by the intracellular invasion of M. hyorhinis, and its pharmacological and genetic inhibition prevented M. hyorhinis infection-induced TNT generation in NIH3T3 cells. The pharmacological and genetic inhibition of Rac1 also reduced the cell-to-cell dissemination of M. hyorhinis. Based on these data, we conclude that intracellular invasion of M. hyorhinis induces the formation of TNTs, which are used for the cell-to-cell dissemination of M. hyorhinis.