• Title/Summary/Keyword: Actin polymerization

Search Result 33, Processing Time 0.033 seconds

Lysophosphatidylcholine induces azurophil granule translocation via Rho/Rho kinase/F-actin polymerization in human neutrophils

  • Ham, Hwa-Yong;Kang, Shin-Hae;Song, Dong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.175-182
    • /
    • 2022
  • Translocation of azurophil granules is pivotal for bactericidal activity of neutrophils, the first-line defense cells against pathogens. Previously, we reported that lysophosphatidylcholine (LPC), an endogenous lipid, enhances bactericidal activity of human neutrophils via increasing translocation of azurophil granules. However, the precise mechanism of LPC-induced azurophil granule translocation was not fully understood. Treatment of neutrophil with LPC significantly increased CD63 (an azurophil granule marker) surface expression. Interestingly, cytochalasin B, an inhibitor of action polymerization, blocked LPC-induced CD63 surface expression. LPC increased F-actin polymerization. LPC-induced CD63 surface expression was inhibited by both a Rho specific inhibitor, Tat-C3 exoenzyme, and a Rho kinase (ROCK) inhibitor, Y27632 which also inhibited LPC-induced F-actin polymerization. LPC induced Rho-GTP activation. NSC23766, a Rac inhibitor, however, did not affect LPC-induced CD63 surface expression. Theses results suggest a novel regulatory mechanism for azurophil granule translocation where LPC induces translocation of azurophil granules via Rho/ROCK/F-actin polymerization pathway.

Hepatitis B virus X protein enhances liver cancer cell migration by regulating calmodulin-associated actin polymerization

  • Kim, Mi-jee;Kim, Jinchul;Im, Jin-su;Kang, Inho;Ahn, Jeong Keun
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.614-619
    • /
    • 2021
  • Hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC), which is a highly aggressive cancer. HBV X protein (HBx), one of four HBV gene products, plays pivotal roles in the development and metastasis of HCC. It has been reported that HBx induces liver cancer cell migration and reorganizes actin cytoskeleton, however the molecular basis for actin cytoskeleton reorganization remains obscure. In this study, we for the first time report that HBx promotes actin polymerization and liver cancer cell migration by regulating calcium modulated protein, calmodulin (CaM). HBx physically interacts with CaM to control the level of phosphorylated cofilin, an actin depolymerizing factor. Mechanistically, HBx interacts with CaM, liberates Hsp90 from its inhibitory partner CaM, and increases the activity of Hsp90, thus activating LIMK1/cofilin pathway. Interestingly, the interaction between HBx and CaM is calcium-dependent and requires the CaM binding motif on HBx. These results indicate that HBx modulates CaM which plays a regulatory role in Hsp90/LIMK1/cofilin pathway of actin reorganization, suggesting a new mechanism of HBV-induced HCC metastasis specifically derived by HBx.

Controllable Movement of the Azobenzene Linked Crown Ether Conjugated Liposome

  • Seo, Eun-Seok;Kim, Soo-Hyun;Kim, Jin-Seok;Kim, Byung-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1158-1162
    • /
    • 2005
  • Drug delivery systems have been developed to reduce the side toxicity of drugs by localizing them in the site of action. But it depends on the circulation of the blood and it doesn't have the function of locomotive mechanism of itself for searching for the region of disease. However, this problem could be solved by nanobot which have the locomotive function. So, we mimic the movement of cell that can move in a human body. In this paper, to polymerize the encapsulated actin within the liposome, electroporation technique is employed. In order to optimize polymerization and depolymerization of the liposome, we compare the time of polymerization and depolymerization by concentration of crown ether. we synthesis the liposome which contain azobenzene Linked crown Ether conjugated Actin protein. Azobenze linked crown ether holds the K+ ion by exposure of UV light and this disturbs the actin polymerization. In result, UV light could control the liposome growth. Finally, we could develop the liposome robot and control the growth and degeneration of the liposome by external stimuli such s UV light. The merit of the controlling by UV light doesn't need to inject proteins which induce polymerization and depolymerization of actin protein.

  • PDF

Effect of Arp2/3 Complex on Sperm Motility and Membrane Structure in Bovine

  • Lee, June-Sub;Park, Yoo-Jin;Kim, Jin;Rahman, Md. Saidur;Kwon, Woo-Sung;Yoon, Sung-Jae;You, Young-Ah;Pang, Myung-Geol
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.169-174
    • /
    • 2013
  • Sperm capacitation refers to polymerization of filamentous (F)-actin from globular (G)-actin. While the role of actin-related protein 2/3 (Arp2/3) complex in actin polymerization is well appreciated, the underlying mechanism(s) and its relationship with capacitation are poorly understood. Therefore, to evaluate the potential role of Arp2/3 complex on capacitation, bovine spermatozoa were incubated with multiple doses (1, 10 and $100{\mu}M$) of CK-636, an inhibitor of Arp2/3 complex with heparin. The cellular localization of the Arp2/3 complex in spermatozoa was identified by immunohistochemistry, whereas western blot was also applied to detect the protein tyrosine phosphorylation of sperm proteins. Additionally, sperm motility and kinematic parameters were evaluated using a computer-assisted sperm analysis system. CK-636 resulted in significant changes in the ratio of Arp2/3 complex localization between acrosome and equatorial region of the spermatozoa. Short-term exposure of spermatozoa to $100{\mu}M$ of CK-636 significantly decreased sperm motility, however a non-detectable effect on protein tyrosine phosphorylation was observed during capacitation. On the basis of these results, we propose that Arp2/3 complex is associated with morphological changes during capacitation and compromised sperm motility.

Neuronal function and dysfunction of CYFIP2: from actin dynamics to early infantile epileptic encephalopathy

  • Zhang, Yinhua;Lee, Yeunkum;Han, Kihoon
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.304-311
    • /
    • 2019
  • The cytoplasmic FMR1-interacting protein family (CYFIP1 and CYFIP2) are evolutionarily conserved proteins originally identified as binding partners of the fragile X mental retardation protein (FMRP), a messenger RNA (mRNA)-binding protein whose loss causes the fragile X syndrome. Moreover, CYFIP is a key component of the heteropentameric WAVE regulatory complex (WRC), a critical regulator of neuronal actin dynamics. Therefore, CYFIP may play key roles in regulating both mRNA translation and actin polymerization, which are critically involved in proper neuronal development and function. Nevertheless, compared to CYFIP1, neuronal function and dysfunction of CYFIP2 remain largely unknown, possibly due to the relatively less well established association between CYFIP2 and brain disorders. Despite high amino acid sequence homology between CYFIP1 and CYFIP2, several in vitro and animal model studies have suggested that CYFIP2 has some unique neuronal functions distinct from those of CYFIP1. Furthermore, recent whole-exome sequencing studies identified de novo hot spot variants of CYFIP2 in patients with early infantile epileptic encephalopathy (EIEE), clearly implicating CYFIP2 dysfunction in neurological disorders. In this review, we highlight these recent investigations into the neuronal function and dysfunction of CYFIP2, and also discuss several key questions remaining about this intriguing neuronal protein.

Actin Dysfunction Induces Cell Cycle Delay at G2/M with Sustained ERK and RSK Activation in IMR-90 Normal Human Fibroblasts

  • Shrestha, Deepmala;Choi, Daeun;Song, Kiwon
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.436-443
    • /
    • 2018
  • The actin cytoskeleton plays a key role in the entry of mitosis as well as in cytokinesis. In a previous study, we showed that actin disruption delays mitotic entry at G2/M by sustained activation of extracellular signal-related kinase 1/2 (ERK1/2) in primary cells but not in transformed cancer cell lines. Here, we examined the mechanism of cell cycle delay at G2/M by actin dysfunction in IMR-90 normal human fibroblasts. We observed that de-polymerization of actin with cytochalasin D (CD) constitutively activated ribosomal S6 kinase (RSK) and induced inhibitory phosphorylation of Cdc2 (Tyr 15) in IMR-90 cells. In the presence of an actin defect in IMR-90 cells, activating phosphorylation of Wee1 kinase (Ser 642) and inhibitory phosphorylation of Cdc25C (Ser 216) was also maintained. However, when kinase-dead RSK (DN-RSK) was overexpressed, we observed sustained activation of ERK1/2, but no delay in the G2/M transition, demonstrating that RSK functions downstream of ERK in cell cycle delay by actin dysfunction. In DN-RSK overexpressing IMR-90 cells treated with CD, phosphorylation of Cdc25C (Ser 216) was blocked and phosphorylation of Cdc2 (Tyr 15) was decreased, but the phosphorylation of Wee1 (Ser 642) was maintained, demonstrating that RSK directly controls phosphorylation of Cdc25C (Ser 216), but not the activity of Wee1. These results strongly suggest that actin dysfunction in primary cells activates ERK1/2 to inhibit Cdc2, delaying the cell cycle at G2/M by activating downstream RSK, which phosphorylates and blocks Cdc25C, and by directly activating Wee1.