Browse > Article
http://dx.doi.org/10.5483/BMBRep.2019.52.5.097

Neuronal function and dysfunction of CYFIP2: from actin dynamics to early infantile epileptic encephalopathy  

Zhang, Yinhua (Department of Neuroscience, College of Medicine, Korea University)
Lee, Yeunkum (Department of Neuroscience, College of Medicine, Korea University)
Han, Kihoon (Department of Neuroscience, College of Medicine, Korea University)
Publication Information
BMB Reports / v.52, no.5, 2019 , pp. 304-311 More about this Journal
Abstract
The cytoplasmic FMR1-interacting protein family (CYFIP1 and CYFIP2) are evolutionarily conserved proteins originally identified as binding partners of the fragile X mental retardation protein (FMRP), a messenger RNA (mRNA)-binding protein whose loss causes the fragile X syndrome. Moreover, CYFIP is a key component of the heteropentameric WAVE regulatory complex (WRC), a critical regulator of neuronal actin dynamics. Therefore, CYFIP may play key roles in regulating both mRNA translation and actin polymerization, which are critically involved in proper neuronal development and function. Nevertheless, compared to CYFIP1, neuronal function and dysfunction of CYFIP2 remain largely unknown, possibly due to the relatively less well established association between CYFIP2 and brain disorders. Despite high amino acid sequence homology between CYFIP1 and CYFIP2, several in vitro and animal model studies have suggested that CYFIP2 has some unique neuronal functions distinct from those of CYFIP1. Furthermore, recent whole-exome sequencing studies identified de novo hot spot variants of CYFIP2 in patients with early infantile epileptic encephalopathy (EIEE), clearly implicating CYFIP2 dysfunction in neurological disorders. In this review, we highlight these recent investigations into the neuronal function and dysfunction of CYFIP2, and also discuss several key questions remaining about this intriguing neuronal protein.
Keywords
Actin polymerization; Cytoplasmic FMR1-interacting protein 2 (CYFIP2); Early infantile epileptic encephalopathy (EIEE); Neuronal synapse; WAVE regulatory complex (WRC);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Chen B, Brinkmann K, Chen Z et al (2014) The WAVE regulatory complex links diverse receptors to the actin cytoskeleton. Cell 156, 195-207   DOI
2 Contractor A, Klyachko VA and Portera-Cailliau C (2015) altered neuronal and circuit excitability in fragile X syndrome. Neuron 87, 699-715   DOI
3 Marin O, Valiente M, Ge X and Tsai LH (2010) Guiding neuronal cell migrations. Cold Spring Harbor Persp Biol 2, a001834   DOI
4 Kevenaar JT and Hoogenraad CC (2015) The axonal cytoskeleton: from organization to function. Front Mol Neurosci 8, 44   DOI
5 Spence EF and Soderling SH (2015) Actin out: regulation of the synaptic cytoskeleton. J Biol Chem 290, 28613-28622   DOI
6 Yan Z, Kim E, Datta D, Lewis DA and Soderling SH (2016) Synaptic actin dysregulation, a convergent mechanism of mental disorders? J Neurosci 36, 11411-11417   DOI
7 Chen Z, Borek D, Padrick SB et al (2010) Structure and control of the actin regulatory WAVE complex. Nature 468, 533-538   DOI
8 Choi S-Y and Han K (2015) Emerging role of synaptic actin-regulatory pathway in the pathophysiology of mood disorders. Animal Cells and Systems 19, 283-288   DOI
9 Penzes P, Cahill ME, Jones KA, VanLeeuwen JE and Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14, 285-293   DOI
10 Takenawa T and Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nature reviews. Mol Cell Biol 8, 37-48
11 Mendoza MC (2013) Phosphoregulation of the WAVE regulatory complex and signal integration. Semin Cell Develop Biol 24, 272-279   DOI
12 Krause M and Gautreau A (2014) Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol 15, 577-590   DOI
13 Abekhoukh S and Bardoni B (2014) CYFIP family proteins between autism and intellectual disability: links with Fragile X syndrome. Front Cellular Neurosci 8, 81
14 Lee Y, Kim D, Ryu JR et al (2017) Phosphorylation of CYFIP2, a component of the WAVE-regulatory complex, regulates dendritic spine density and neurite outgrowth in cultured hippocampal neurons potentially by affecting the complex assembly. Neuroreport 28, 749-754   DOI
15 Schenck A, Bardoni B, Moro A, Bagni C and Mandel JL (2001) A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proc Natl Acad Sci U S A 98, 8844-8849   DOI
16 Bagni C, Tassone F, Neri G and Hagerman R (2012) Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest 122, 4314-4322   DOI
17 Napoli I, Mercaldo V, Boyl PP et al (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134, 1042-1054   DOI
18 De Rubeis S, Pasciuto E, Li KW et al (2013) CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation. Neuron 79, 1169-1182   DOI
19 Yoon KJ, Nguyen HN, Ursini G et al (2014) Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell 15, 79-91   DOI
20 Oguro-Ando A, Rosensweig C, Herman E et al (2015) Increased CYFIP1 dosage alters cellular and dendritic morphology and dysregulates mTOR. Mol Psychi 20, 1069-1078   DOI
21 Bozdagi O, Sakurai T, Dorr N, Pilorge M, Takahashi N and Buxbaum JD (2012) Haploinsufficiency of Cyfip1 produces fragile X-like phenotypes in mice. PloS one 7, e42422   DOI
22 Peng J, Wang Y, He F et al (2018) Novel west syndrome candidate genes in a Chinese cohort. CNS Neurosci Ther 24, 1196-1206   DOI
23 Chung L, Wang X, Zhu L et al (2015) Parental origin impairment of synaptic functions and behaviors in cytoplasmic FMRP interacting protein 1 (Cyfip1) deficient mice. Brain Res 1629, 340-350   DOI
24 Kumar V, Kim K, Joseph C et al (2013) C57BL/6N mutation in cytoplasmic FMRP interacting protein 2 regulates cocaine response. Science 342, 1508-1512   DOI
25 Han K, Chen H, Gennarino VA, Richman R, Lu HC and Zoghbi HY (2015) Fragile X-like behaviors and abnormal cortical dendritic spines in cytoplasmic FMR1-interacting protein 2-mutant mice. Human Mol Gen 24, 1813-1823   DOI
26 Zhang Y, Kang H, Lee Y et al (2019) Smaller body size, early postnatal lethality, and cortical extracellular matrix-related gene expression changes of Cyfip2-null embryonic mice. Front Mol Neurosci 11, 482   DOI
27 Nakashima M, Kato M, Aoto K et al (2018) De Novo hotspot variants in CYFIP2 cause early-onset epileptic encephalopathy. Ann Neurol 83, 794-806   DOI
28 Pathania M, Davenport EC, Muir J, Sheehan DF, Lopez-Domenech G and Kittler JT (2014) The autism and schizophrenia associated gene CYFIP1 is critical for the maintenance of dendritic complexity and the stabilization of mature spines. Translational Psychiatry 4, e374   DOI
29 Sala C and Segal M (2014) Dendritic spines: the locus of structural and functional plasticity. Physiological Reviews 94, 141-188   DOI
30 Collins MO, Husi H, Yu L et al (2006) Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 97 Suppl 1, 16-23   DOI
31 Pan L, Zhang YQ, Woodruff E and Broadie K (2004) The Drosophila fragile X gene negatively regulates neuronal elaboration and synaptic differentiation. Curr Biol 14, 18 63-1870   DOI
32 Bayes A, van de Lagemaat LN, Collins MO et al (2011) Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci 14, 19-21   DOI
33 Li J, Zhang W, Yang H et al (2017) Spatiotemporal profile of postsynaptic interactomes integrates components of complex brain disorders. Nat Neurosci 20, 1150-1161   DOI
34 Han K, Holder JL Jr, Schaaf CP et al (2013) SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature 503, 72-77   DOI
35 Huttlin EL, Jedrychowski MP, Elias JE et al (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174-1189   DOI
36 Schenck A, Bardoni B, Langmann C, Harden N, Mandel JL and Giangrande A (2003) CYFIP/Sra-1 controls neuronal connectivity in drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron 38, 887-898   DOI
37 Abekhoukh S, Sahin HB, Grossi M et al (2017) New insights into the regulatory function of CYFIP1 in the context of WAVE- and FMRP-containing complexes. Dis Mod Mech 10, 463-474   DOI
38 Zhao L, Wang D, Wang Q, Rodal AA and Zhang YQ (2013) Drosophila cyfip regulates synaptic development and endocytosis by suppressing filamentous actin assembly. PLoS Genetics 9, e1003450   DOI
39 Trowe T, Klostermann S, Baier H et al (1996) Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. Development 123, 439-450   DOI
40 Baier H, Klostermann S, Trowe T, Karlstrom RO, Nusslein-Volhard C and Bonhoeffer F (1996) Genetic dissection of the retinotectal projection. Development 123, 415-425   DOI
41 Bonaccorso CM, Spatuzza M, Di Marco B et al (2015) Fragile X mental retardation protein (FMRP) interacting proteins exhibit different expression patterns during development. Int J Devel Neurosci 42, 15-23   DOI
42 Tiwari SS, Mizuno K, Ghosh A et al (2016) Alzheimerrelated decrease in CYFIP2 links amyloid production to tau hyperphosphorylation and memory loss. Brain : J Neurol 139, 2751-2765   DOI
43 Gursoy S and Ercal D (2016) Diagnostic Approach to Genetic Causes of Early-Onset Epileptic Encephalopathy. J Child Neurol 31, 523-532   DOI
44 McTague A, Howell KB, Cross JH, Kurian MA and Scheffer IE (2016) The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol 15, 304-316   DOI
45 Zhang Y, Chen K, Sloan SA et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34, 11929-11947   DOI
46 Bassell GJ and Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201-214   DOI
47 Cajigas IJ, Tushev G, Will TJ, tom Dieck S, Fuerst N and Schuman EM (2012) The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron 74, 453-466   DOI
48 Hsiao K, Harony-Nicolas H, Buxbaum JD, Bozdagi-Gunal O and Benson DL (2016) Cyfip1 Regulates Presynaptic Activity during Development. J Neurosci 36, 1564-1576   DOI
49 Nelson SB and Valakh V (2015) Excitatory/Inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87, 684-698   DOI
50 Lee Y, Zhang Y, Kim S and Han K (2018) Excitatory and inhibitory synaptic dysfunction in mania: an emerging hypothesis from animal model studies. Exp Mol Med 50, 12   DOI
51 Kirkpatrick SL, Goldberg LR, Yazdani N et al (2017) Cytoplasmic FMR1-Interacting protein 2 is a major genetic factor underlying binge eating. Biological Psychiatry 81, 757-769   DOI
52 Pittman AJ, Gaynes JA and Chien CB (2010) nev (cyfip2) is required for retinal lamination and axon guidance in the zebrafish retinotectal system. Develop Biol 344, 784-794   DOI
53 Cioni JM, Wong HH, Bressan D, Kodama L, Harris WA and Holt CE (2018) Axon-axon interactions regulate topographic optic tract sorting via CYFIP2-dependent WAVE complex function. Neuron 97, 1078-1093 e1076   DOI
54 Marsden KC, Jain RA, Wolman MA et al (2018) A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold. Cell Rep 23, 878-887   DOI
55 Keane TM, Goodstadt L, Danecek P et al (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477, 289-294   DOI
56 Chen B, Chou HT, Brautigam CA et al (2017) Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites. eLife 6, e29795   DOI
57 Darnell JC, Van Driesche SJ, Zhang C et al (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247-261   DOI
58 Lee JH, Kim HJ, Yoon JM et al (2016) Interstitial deletion of 5q33.3q35.1 in a boy with severe mental retardation. Korean J Pediat 59, S19-S24   DOI
59 Spranger S, Rommel B, Jauch A, Bodammer R, Mehl B and Bullerdiek J (2000) Interstitial deletion of 5q33.3q35.1 in a girl with mild mental retardation. Am J Med Genet 93, 107-109   DOI
60 Focking M, Lopez LM, English JA et al (2015) Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia. Mol Psych 20, 424-432   DOI