• Title/Summary/Keyword: Acoustics

Search Result 642, Processing Time 0.025 seconds

Study on the Medical Review on Yukjagyeol and Younggamudo Its Clinical Application (육자결(六字訣)과 영가무도(詠歌舞蹈)의 한의학적 고찰 및 임상적용에 대한 연구)

  • Lee, Dong-Wook;Han, Chang-Hyun;Park, Soo-Jin;Kwon, Young-Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.516-527
    • /
    • 2008
  • Sounds and music have been used in various ways in the East and the West, as it is well known that they influence the human mind and health a lot. Recently, there have been many studies regarding the remedy through sounds and music in the West and they have made good effects in the actual therapy. In the East, people knew that sounds and music would make great effects on human mind long time ago and they placed importance on sounds and music. Although there is a Sound Therapy in Oriental Medicine, it is not studied sufficiently in modern Oriental Medicine. It does not have clear standards for the clinical application and has not been frequently used. Accordingly, Yukjagyeol which has long been used in Korean Medicine and Younggamudo which was made by Kim Il-bu in late Chosun were compared from the perspective of acoustics and demonstrative treatment theory of Korean Medicine. Younggamudo by Kim il-bu allot the five sounds such as 'Eum, Ah, Eo, Ih and Uh' to 'spleen, lung, liver, heart and kidney' respectively. As the five sounds are all vowels and vibrate the vocal band as much as possible, they vibrate and resonant the respective organs to help them to function and promote circulation. In oriental medicine, there is 'Singing and Dancing Treatment'. They say songs and dances nurtures personality, supplement blood stream and comfort the mind. As the five sounds of Younggamudo take the melody while vibrating the vocal band sufficiently, when it passes from Youngto Ga(Songs) we may dance moving our bodies according to the rhythm. Therefore Gongbeop of Younggamudo helps the functionality of human organs and promotes blood circulation. As Yukjagyeol is Sabeop(discharging method), it should be used for those who have surplus Sagi and should not use for Heojeung. As Younggamudo is Bobeop(supplementing method), it is not for Shiljeung but for Heojeung which lacks of Jeonggi. It is considered that healthy people without specific disease can use it as a preventive method of 'Chimijeong' to maintain their physical and mental health. It is considered that we can have useful effects if we apply Yukjagyeol and Younggamudo dialectically with the concept of Bosa. It is considered that concrete application to Sound Gigong can be possible by searching for the methodology for empirical further study and clinical experiments and clinical application in the future.

Characteristics of Bottlenose Dolphin(Tursiops truncatus) Whistle (큰돌고래의 휘슬음 특성)

  • 신형일;서두옥;이대재;황두진;배문기;이유원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.4
    • /
    • pp.271-277
    • /
    • 2002
  • This paper was described on the characteristics of bottlenose dolphin (Tursiops truncatus) whistle to develop a warning and attracting acoustic system which can be made friends woith environment and minimized to the fishing pollution from Cetaceans. The experiment for the acoustics of bottlenose dolphin whistle was carried out in dolphin performance hall at Seoul Grand Park during 18th~19th April, 2002. The frequency and the spectrum level of whistle a same pool were revealed 6~10KHz and 85㏈ but those revealed two harmonic waves a 6.7KHz and 21.3KHz for the frequency and 110㏈ and 94㏈ for the spectrum level, respectively, when a dolphin isolated from others. The range of frequency change of whistle was 3.86KHz and continuous time was 0.08 sec. The range of frequency change 10.20 KHz higher as 14.06 KHz and continuous time was 0.11sec longer as 0.19sec when a dolphin isolated from others. By the Mann-Whitney test for the result, there was a significant difference for the range of frequency change and continuous time between normal condition and when a dolphin was isolated from others. The pattern of whistle at the dolphin performance hall was five types and the frequency was getting increased slowly in the range of 5~10KHz at normal condition but there were pattern change of 5~20KHz at the isolated condition. Therefore it is thought that these experiments would be valuable for the development of acoustic system.

Quantitative Analysis of Voice Quality after Radiation Therapy for Stage T1a Glottic Carcinoma (T1a 병기 성문암의 방사선 치료 후 음성에 관한 연구)

  • Lee Joon-Kyoo;Chung Woong-Gi
    • Radiation Oncology Journal
    • /
    • v.23 no.1
    • /
    • pp.17-21
    • /
    • 2005
  • Purpose : To evaluate the voices of irradiated patients with early glottic carcinoma and to compare these with the voices of healthy volunteers. Materials and Methods : The voice samples (sustained vowel) of seventeen male patients who had been irradiated for T1a glottic squamous carcinoma at least 1 year prior to the study were analyzed with objective voice analyzer (acoustic voice analysis, aerodynamic test, and videostroboscopic analysis) and compared with those of a normal group of twenty age- and sex-matched volunteers. Average fundamental frequency, jitter, shimmer, and noise-to-harmonic ratio were obtained for acoustic voice analysis. Maximal phonation time, mean flow rate, intensity, subglottic pressure, glottal resistance, glottal efficiency, and glottal power were obtained for aerodynamic test. Results : The irradiated group presented higher values of shimmer in acoustic voice analysis. There was no significant difference between two groups in other parameters. Conclusion : In this study all the objective voice parameters except shimmer were no4 significantly different between the irradiated group and the control group. These results suggest that the voice quality is minimally affected by radiation therapy for 71 a glottic carcinoma.

Analysis of Hull-Induced Flow Noise Characteristics for Wave-Piercing Hull forms (파랑관통형 선형의 선체유기 유동소음특성에 관한 연구)

  • Choi, Woen-Sug;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seo, Jeong-Hwa;Rhee, Shin-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.619-627
    • /
    • 2018
  • As ships become faster, larger and are required to meet higher standards, the importance of flow noise is highlighted. However, unlike in the aeroacoustics field for airplanes and trains (where flow noise is considered in design), acoustics are not considered in the marine field. In this study, analysis procedures for hull-induced flow noise are established to investigate the flow noise characteristics of a wave-piercing hull form that can negate the effect of wave-breaking. The principal mechanisms behind hull-induced flow noise are fluid-structure interactions between complex flows underneath the turbulent boundary layer and the hull. Noise induced by the turbulent boundary layer was calculated using wall pressure fluctuation and energy flow analysis methods. The results obtained show that noise characteristics can be distinguished by frequency range and hull region. Also, the low-frequency range is affected by hull forms such that it is correlated with ship speed.

Acoustic characteristics of sound field in partially opened rooms - Emphasis on horizontal coupling of diffuse and non-diffuse field - (실내공간의 부분적 개방에 따른 음향특성변화 I - 확산음장과 자유음장의 수평적 결합을 중심으로 -)

  • Jeong, Dae-Up;Choi, Young-Ji;Kim, Ji-Young;Oh, Yang-Ki;Choi, Seok-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.105-114
    • /
    • 2007
  • Large span spaces have been widely used for various purposes including sports events in other countries. Due to increasing demands on multi-purpose use of such spaces, recently built large span sport facilities such dome stadiums have been required to accommodate sport events as well as performing events. Also, retractable ceilings and/or walls were generally adopted in those spaces for providing various event conditions. It seems obvious that the openings between diffuse fields and free field may cause difficulties in the acoustic design of such spaces In the present work, the acoustic characteristics of non-diffuse field has been investigated using 1/10 acoustic scale models. It was found that RTs at low- and mid-frequencies decayed faster than those at high-frequencies as the percentage of opening area increased. The decay rate of RTs at high frequencies were not influenced by increasing the area of an opening. Also high dependence of EDT on the percentage of opening area was observed at all frequency range. D50 was not improved by increasing the area of an opening up to 12.5% and then sharply increased. The application of Schroeder integration to evaluate the reverberation charateristics of coupled spaces may not be proper, since non-exponential decay process with double or triple decays of those spaces can not be properly defined. EDT seems more appropriate to predict reverberation at the early acoustic design stage of acoustically coupled spaces.

  • PDF

A pattern of cell death induced by 40 kHz ultrasound in yeast cell model (40 kHz 초음파에 의해 유도된 효모세포 모델에서 세포사멸 패턴)

  • Kim, Ji Wook;Kong, Hee Jeong;Kim, Young H.;Kang, Kwang Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.172-178
    • /
    • 2017
  • Ultrasound has been widely used for biological and medical applications including induction of cell death, but a precise mechanism of induced cell death by ultrasound is controversial. In this study, an irradiation system with 40 kHz ultrasound was developed for a suitable cell death test of a representative unicellular organism, yeast, and used to study the biological effect of ultrasound on inducing cell death. Potassium Iodide (KI) dosimetry was used to devise an optimal system that successfully delivers 40 kHz ultrasound and produces reactive oxygen species in a 1.5 ml Eppendorf tube. Cell death was observed in an ultrasound transmission time-dependent fashion in this system. Thermal effect during irradiation was not observable in ultrasound induced cell death. Co-treatment of 40 kHz ultrasound and hydrogen peroxide showed a synergistic effect in inducing cell death. This finding suggests that 40 kHz ultrasound is related to reactive oxygen species formation. However, NAC (N-acetyl-L-cysteine) oxygen scavenger slightly inhibited the cell death by 40 kHz ultrasound. It was also found that 40 kHz ultrasound induced cell death was slightly inhibited by inhibitors of necrosis or apoptosis (glycyrrhizin or zVAD-fmk). This study suggests that cell death induced by 40 kHz ultrasound may not be exclusively related to reactive oxygen species formation and thermal effects in irradiated yeast cells.

Low Frequency Noise and It's Psychological Effects

  • Eom, Jin-Sup;Kim, Sook-Hee;Jung, Sung-Soo;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • Objective: This entire study has two parts. Study I aimed to develop a psychological assessment scale and the study II aimed to investigate the effects of LFN (low frequency noise) on the psychological responses in humans, using the scale developed in the study I. Background: LFN is known to have a negative impact on the functioning of humans. The negative impact of LFN can be categorized into two major areas of functioning of humans, physiological and psychological areas of functioning. The physiological impact can cause abnormalities in threshold, balancing and/or vestibular system, cardiovascular system and, hormone changes. Psychological functioning includes cognition, communication, mental health, and annoyance. Method: 182 college students participated in the study I in development of a psychological assessment scale and 42 paid volunteers participated in the study II to measure psychological responses. The LFN stimuli consisted of 12 different pure tones and 12 different 1 octave-band white noises and each stimulus had 4 different frequencies and 3 different sounds pressure levels. Results: We developed the psychological assessment scale consisting of 17 items with 3 dimensions of psychological responses (i.e., perceived physical, perceived physiological, and emotional responses). The main findings of LFN on the responses were as follows: 1. Perceived psychological responses showed a linear relation with SPL (sound pressure level), that is the higher the SPL is, the higher the negative psychological responses were. 2. Psychological responses showed quadric relations with SPL in general. 3. More negative responses at 31.5Hz LFN than those of 63 and 125Hz were reported, which is deemed to be caused by perceived vibration by 31.5Hz. 'Perceived vibration' at 31.5Hz than those of other frequencies of LFN is deemed to have amplified the negative psychological response. Consequently there found different effects of low frequency noise with different frequencies and intensity (SPL) on multiple psychological responses. Conclusion: Three dimensions of psychological responses drawn in regard to this study differed from others in the frequencies and SLP of LFN. Negative psychological responses are deemed to be differently affected by the frequency, SPL of the LFN and 'feel vibration' induced by the LFN. Application: The psychological scale from our study can be applied in quantitative psychological measurement of LFN at home or industrial environment. In addition, it can also help design systems to block LFN to provide optimal conditions if used the study outcome, .i.e., the relations between physical and psychological responses of LFN.

Comparative Studies of Perceiving Korean Monosyllabic Digit Words under Different Speech Compression Schemes (음성압축 방식의 변화가 한국어 단음절 숫자 인지기능에 미치는 영향의 비교 연구)

  • Lim, Dukhwan;Won, Yookyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.262-268
    • /
    • 2013
  • The performances of speech compression schemes appeared to be dependent on the response profiles to compressed stimuli and the features of individual languages to some extent. Although these response profiles were critical in comparing various compression outcomes, the related data were limited in number for Korean monosyllabic words. From the previous study, data from PNT (Preserving No Trait) compression was selected as a base set for comparison. In this study, the outcomes from PPT (Preserving Pitch Trait) and PTT (Preserving Time Trait) were analyzed under the same condition. Then, the properties of these three widely used representative compression schemes were quantitatively compared in normal hearing adults (N=20) for controlled Korean quintet digit sets (0 through 9). Results showed that PPT compression scheme exhibited the best perceptual performances for the Korean quintet digit sets in the final outcomes (PPT>PTT>PNT). The compression ratios of 50% performances were estimated as about 20%, 42%, and 44% for PPT, PTT, and PNT, respectively. The data indicated the influences of the salient psychoacoustic features of the three representative compressions on perceiving Korean monosyllabic digit words. This controlled procedure with monosyllabic quintet sets can evaluate efficiency and effectiveness of other compression schemes and may also contribute to diagnosing auditory processing disorders and fitting special hearing aids with compression issues.

Study on the Measurement of TMP Pumping Speed (터보분자펌프(TMP) 배기속도 측정에 관한 고찰)

  • Kang, S.B.;Shin, J.H.;Cha, D.J.;Koh, D.Y.;Cheung, W.S.;Lim, J.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.249-255
    • /
    • 2010
  • Methods of the characteristics evaluation of turbo-molecular pumps (TMP) are well-defined in the international measurement standards such as ISO, PNEUROP, DIN, JIS, and AVS. The Vacuum Center in the Korea Research Institute of Standards and Science (KRISS) has recently designed, constructed, and established the integrated characteristics evaluation system of TMPs based on the international documents by continuously pursuing and acquiring the reliable international credibility through measurement perfection. The measurement of TMP pumping speed is normally performed with the throughput and orifice methods dependent on the mass flow regions. However, in the UHV range of the molecular flow region, the high uncertainties of the gauges, mass flow rates, and conductance are too critical to precisely accumulate reliable data. In order to solve the uncertainty problems of pumping speeds in the UHV range, we introduced a SRG with 1% accuracy and a constant volume flow meter (CVFM) to measure the finite mass flow rates down to $10^{-1}$ Pa-L/s with 3% uncertainty for the throughput method. In this way we have performed the measurement of pumping speed down to $10^{-4}$ Pa with an uncertainty of less than 6% for a 1000 L/s TMP. In this article we suggest that the CVFM has an ability to measure the conductance of the orifice experimentally with flowing the known mass through the orifice chambers, so that we may overcome the discontinuity problem encountering during introducing two measurement methods in one pumping speed evaluation sequence.

Acoustic Sensitivity Analysis of a Ring-type Probe Based on a Fiber-optic Sagnac Interferometric Sensor (광섬유 사냑 간섭형 센서에 기반한 링형 탐촉자의 수중 음향 민감도 해석)

  • Lee, Yeon-Woo;Kwon, Hyu-Sang;Kwon, Il-Bum
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • To measure underwater acoustics using a fiber-optic Sagnac interferometric sensor, the sensitivities of ring-type probes are investigated by theoretical and experimental studies. A ring-type probe was fabricated by packaging a single-mode fiber wound around an acrylate cylinder of diameter 5 cm with epoxy bond. The probes were prepared as A-type, which was packaged with 46.84 m of sensing optical fiber, and B-type, which was packaged with 112.22 m of sensing fiber. The underwater acoustic test was performed at frequencies of 50, 70, and 90 kHz, and over a range of acoustic pressure of 20-100 Pa, to study the sensitivity. A commercial acoustic generator was located 1 m from the acoustic sensor, such as the ring-type probe or a commercial acoustic sensor. From the experimental test, the acoustic sensitivity of the ring-type probe had different values due to acoustic frequencies, unlike the theoretical prediction. Therefore, the experimental sensitivities were averaged for comparison to the theoretical values. These averaged sensitivities are 25.48 × 10-5 rad/Pa for the A-type probe and 60.79 × 10-5 rad/Pa for the B-type probe. The correction coefficient of Young's modulus c was determined to be 0.35.