• Title/Summary/Keyword: Acoustic-simulation

Search Result 811, Processing Time 0.024 seconds

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

A Study on The Range Estimation of Underwater Acoustic Source using FDOA and TDOA of Multipath Signals (다중경로 신호의 도달 주파수와 시간 차를 이용한 수중음원 거리 추정 연구)

  • Son, Yoon-Jun;Son, Gi-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.311-318
    • /
    • 2021
  • Underwater, signals are transmitted by sound waves. Sound waves are transmitted through a multipath, either directly or through reflection, due to the variety of underwater environmental characteristics. In such diverse and complex underwater environments, tests must be conducted to determine the extent of the hazard from the survivability and pitfalls of submarines by measuring the underwater radiated noise. Usually, the sound source level measurement of underwater radiated noise should be made within the closest point (CPA: Closest Point of Approach) ± a few meters between the measurement sensor and the submarine. In this study, FDOA and TDOA methods were proposed to estimate the underwater source range. A simulation based on the underwater channel model confirmed the performance of the proposed method.

Machine learning based radar imaging algorithm for drone detection and classification (드론 탐지 및 분류를 위한 레이다 영상 기계학습 활용)

  • Moon, Min-Jung;Lee, Woo-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.619-627
    • /
    • 2021
  • Recent advance in low cost and light-weight drones has extended their application areas in both military and private sectors. Accordingly surveillance program against unfriendly drones has become an important issue. Drone detection and classification technique has long been emphasized in order to prevent attacks or accidents by commercial drones in urban areas. Most commercial drones have small sizes and low reflection and hence typical sensors that use acoustic, infrared, or radar signals exhibit limited performances. Recently, artificial intelligence algorithm has been actively exploited to enhance radar image identification performance. In this paper, we adopt machined learning algorithm for high resolution radar imaging in drone detection and classification applications. For this purpose, simulation is carried out against commercial drone models and compared with experimental data obtained through high resolution radar field test.

Autoencoder-based signal modulation and demodulation method for sonobuoy signal transmission and reception (소노부이 신호 송수신을 위한 오토인코더 기반 신호 변복조 기법)

  • Park, Jinuk;Seok, Jongwon;Hong, Jungpyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.4
    • /
    • pp.461-467
    • /
    • 2022
  • Sonobuoy is a disposable device that collects underwater acoustic information and is designed to transmit signals collected in a particular area to nearby aircraft or ships and sink to the seabed upon completion of its mission. In a conventional sonobouy signal transmission and reception system, collected signals are modulated and transmitted using techniques such as frequency division modulation or Gaussian frequency shift keying, and received and demodulated by an aircraft or a ship. However, this method has the disadvantage of the large amount of information to be transmitted and low security due to relatively simple modulation and demodulation methods. Therefore, in this paper, we propose a method that uses an autoencoder to encode a transmission signal into a low-dimensional latent vector to transmit the latent vector to an aircraft or ship and decode the received latent vector to improve signal security and to reduce the amount of transmission information by approximately a factor of a hundred compared to the conventional method. As a result of confirming the sample spectrogram reconstructed by the proposed method through simulation, it was confirmed that the original signal could be restored from a low-dimensional latent vector.

Structural glass panels: An integrated system

  • Bidini, G.;Barelli, L.;Buratti, C.;Castori, G.;Belloni, E.;Merli, F.;Speranzini, E.
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.327-332
    • /
    • 2022
  • In building envelope, transparent components play an important role. The structural glazing systems are the weak element of the casing in terms of mechanical resistance, thermal and acoustic insulation. In the present work, new structural glass panels with granular aerogel in interspace were investigated from different points of view. In particular, the mechanical characterization was carried out in order to assess the resistance to bending of the single glazing pane. To this end, a special instrument system was built to define an alternative configuration of the coaxial double ring test, able to predict the fracture strength of glass large samples (400 × 400 mm) without overpressure. The thermal and lighting performance of an innovative double-glazing façade with granular aerogel was evaluated. An experimental campaign at pilot scale was developed: it is composed of two boxes of about 1.60 × 2 m2 and 2 m high together with an external weather station. The rooms, identical in terms of size, construction materials, and orientation, are equipped with a two-wing window in the south wall surface: the first one has a standard glazing solution (double glazing with air in interspace), the second room is equipped with the innovative double-glazing system with aerogel. The indoor mean air temperature and the surface temperature of the glass panes were monitored together with the illuminance data for the lighting characterization. Finally, a brief energy characterization of the performance of the material was carried out by means of dynamic simulation models when the proposed solution is applied to real case studies.

Blind Noise Separation Method of Convolutive Mixed Signals (컨볼루션 혼합신호의 암묵 잡음분리방법)

  • Lee, Haeng-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.409-416
    • /
    • 2022
  • This paper relates to the blind noise separation method of time-delayed convolutive mixed signals. Since the mixed model of acoustic signals in a closed space is multi-channel, a convolutive blind signal separation method is applied and time-delayed data samples of the two microphone input signals is used. For signal separation, the mixing coefficient is calculated using an inverse model rather than directly calculating the separation coefficient, and the coefficient update is performed by repeated calculations based on secondary statistical properties to estimate the speech signal. Many simulations were performed to verify the performance of the proposed blind signal separation. As a result of the simulation, noise separation using this method operates safely regardless of convolutive mixing, and PESQ is improved by 0.3 points compared to the general adaptive FIR filter structure.

Real-time Data Enhancement of 3D Underwater Terrain Map Using Nonlinear Interpolation on Image Sonar (비선형 보간법을 이용한 수중 이미지 소나의 3 차원 해저지형 실시간 생성기법)

  • Ingyu Lee;Jason Kim;Sehwan Rho;Kee–Cheol Shin;Jaejun Lee;Son-Cheol Yu
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.110-117
    • /
    • 2023
  • Reconstructing underwater geometry in real time with forward-looking sonar is critical for applications such as localization, mapping, and path planning. Geometrical data must be repeatedly calculated and overwritten in real time because the reliability of the acoustic data is affected by various factors. Moreover, scattering of signal data during the coordinate conversion process may lead to geometrical errors, which lowers the accuracy of the information obtained by the sensor system. In this study, we propose a three-step data processing method with low computational cost for real-time operation. First, the number of data points to be interpolated is determined with respect to the distance between each point and the size of the data grid in a Cartesian coordinate system. Then, the data are processed with a nonlinear interpolation so that they exhibit linear properties in the coordinate system. Finally, the data are transformed based on variations in the position and orientation of the sonar over time. The results of an evaluation of our proposed approach in a simulation show that the nonlinear interpolation operation constructed a continuous underwater geometry dataset with low geometrical error.

Application of ray-based blind deconvolution to long-range acoustic communication in deep water (음선 기반 블라인드 디컨볼루션의 장거리 심해 환경으로의 적용)

  • Kim, Donghyeon;Park, Heejin;Kim, J.S.;Hahn, Joo Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.242-253
    • /
    • 2022
  • When the source waveform is unknown, the Green's function can be estimated by Ray-based Blind Deconvolution (RBD) based on the simple array signal processing. In previous papers, RBD was successfully demonstrated using simulation and experiments in shallow water environment. In this paper, we investigate the applicability of RBD for a long-range communication (e.g., 30 km, 60 km, and 90 km) in a deep water environment (1,000 m ~), using experimental data conducted in the east of Pohang, South Korea, in October 2018. Data results are presented to demonstrate Green's function estimation of a communication signal (2.2 kHz ~ 2.9 kHz) using a 16-element, 42-m long vertical array. The results show that the Green's function estimated from RBD is comparable to that of matched filter result. Additional communication performance at a maximum range of 90 km will be also presented.

Aeroacoustic Analysis of UAM Aircraft in Ground Effect for Take-off/Landing on Vertiport (버티포트 이착륙을 고려한 지면 효과를 받는 UAM 항공기에 대한 공력소음 해석 연구)

  • Jin-Yong Yang;Hyeok-Jin Lee;Min-Je Kang;Eunmin Kim;Rho-Shin Myong;Hakjin Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.26-37
    • /
    • 2023
  • Urban air mobility (UAM) is being developed as part of the next-generation aircraft, which could be a viable solution to entrenched problems of urban traffic congestion and environmental pollution. A new airport platform called vertiport as a space where UAM can take off and land vertically is also being introduced. Noise regulations for UAM will be strict due to its operation in a highly populated urban area. Ground effects caused by vertiport can directly affect aerodynamic forces and noise characteristics of UAM. In this study, ground effects of vertiport on aerodynamic loads, vorticity field, and far-field noise were analyzed using Lattice-Boltzmann Method (LBM) simulation and Ffowcs Williams and Hawkings (FW-H) acoustic analogy with a permeable surface method.

The Analysis about Channel Code Performance of Underwater Channel (수중통신채널에서 고려되는 채널 부호의 성능 분석)

  • Bae, Jong-Tae;Kim, Min-Hyuk;Choi, Suk-Soon;Jung, Ji-Won;Chun, Seung-Yong;Dho, Kyeong-Cheol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.286-295
    • /
    • 2008
  • Underwater acoustic communication has multi path error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes signal distortion and error floor. In this paper, we consider the use of various channel coding schemes such as RS code, convolutional code, cross-layer code and LDPC code in order to compensate the multipath effect in underwater channel. As shown in simulation results, characteristic of multipath error is similar to that of random error, so interleaver has little effect for error correcting. For correcting of error floor by multipath error, it is necessary strong channel codes like LDPC code that is similar to Shannon's limit. And the performance of concatenated codes including RS codes has better performance than using singular channel codes.