• Title/Summary/Keyword: Acoustic window

Search Result 90, Processing Time 0.034 seconds

The Effect of an Window Function Weighted Datas with the Estimated Impulse Response of the Acoustic Transfer System Using Cross-Spectrum Method (크로스 스펙트럼법을 사용한 음향 전달계의 임펄스 응답 추정에서 데이터에 거는 창 함수의 영향)

  • Song Chang-Yong;Lee You-Hyun;Kim Chun-Duck;Lee Chai-Bong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.147-150
    • /
    • 1999
  • 본 논문에서는 Cross-Spectrum법에 의한 임펄스 응답을 추정할 때의 창함수의 영향을 살펴본다. 여러종류의 창함수에 대해 전달함수의 지연시간과 창함수의 길이의 관계를 조사하고, 측정에 의해 비교 확인하였다. 음향 전달계의 임펄스 응답 추정치의 평가식을 이용하여 창함수중 Riesz 창함수의 추정 정확도가 대체로 양호함을 확인했다.

  • PDF

Self-Radiation Impedance of rectangular Acoustic Sensor Without Baffle (배플이 없는 사각형 음향센서의 자기방사 임피던스)

  • Lee, Jong-Kil;Seo, In-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.82-88
    • /
    • 1995
  • Conductance and susceptance of the self-radiation impedance in a rectangular acoustic sensor without baffle are measured experimentally. Finite polyurethane window is mounted at the end of the acoustic sensor. The sensor radiation impedance is cauculated using the equivalent electric circuit. Using the Levine's integral equations of a rectangular piston mounted to the rigid infinite baffle, radiation resistance and reactance were simulated numerically. Numerical and experimental results are compared to each other.

  • PDF

An Sound Signal Analysis for Automatic Test of Small DC Motor (소형 DC 모터의 자동검사를 위한 음향신호 분석)

  • Jang Su-Young;Lee Jong-Chan;Kim Sung-Jin;Kim Chun-Deck
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.115-118
    • /
    • 2000
  • 본 연구에서는 소형 DC 모터 완성품의 제품검사에서 객관성이 결여된 판정기준인 작업자의 청각에 의한 관능검사에 대신하여 자동 진단 시스템의 적용으로 고신뢰성을 확보하기 위하여 음향신호를 취득하여 분석하는 방법을 제안하였다. 소형 모터가 회전할 때 발생하는 음향신호를 마이크로폰으로 취득하여, 취득한 신호에 단구간 Hanning Window를 걸어 시간에 따라 이동하면서 신호의 주파수 성분을 시간에 따라 전개하는 STFT(Short-Time Fourier Transform) 기법으로 정상적인 모터와 이상인 모터에서 발생하는 음향신호를 분석하였다.

  • PDF

Numerical analysis of acoustic field inside sonar dome by using a beam tracing method and the theory of elastic wave propagation (빔 추적기법과 다층구조에서의 탄성파 전파이론을 적용한 소나돔 내부 음장 수치해석)

  • Han, Seung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.26-33
    • /
    • 2006
  • A sonar dome is basically designed and installed to protect sonar array from shocks, sea wave slaps and floating matters. The acoustic wave passing through sonar dome, however, can be distorted in magnitude and phase. This paper presents a numerical method for predicting the steady-state sound pressure on the surface of transducer array in the sonar dome and typical results of sonar beam pattern affected by sonar dome. A beam tracing model with phase information and a multi-layered elastic boundary model are involved. A full three-dimensional sonar dome is modeled as a GRP acoustic window, a rubber coated steel baffle and a rubber coated steel hull. A transducer array is modeled as thick steel cylinder. There are some assumptions such as incidence of plane wave, specular reflection on boundary and directionality of transducer element.

Radiation Characteristics of Heavy-weight Floor Impact Sounds in a Standard Test Building (표준실험동에서 중량충격음의 방사 특성)

  • Yoo, Seung-Yup;Jeong, Yong;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.381-384
    • /
    • 2005
  • The purpose of this study is to develop a prediction model for evaluating heavy-weight floor impact sounds in a test building. Three rooms in the test building (slab thickness In and 240mm), which consist of frame concrete structures were tested and modeled. First, the SPL distribution in the receiving room was analyzed by measuring SPL at 90 positions using a bang machine. Then, a vibration model using finite element method is proposed considering the material properties and boundary conditions. In addition, the result of transient analysis was compared with field measurements using a standard heavy-weight impact source. Through a vibro-acoustic simulation program, an acoustic model evaluating the building elements (reflected wall, nor, window and door) was proposed. Finally, validation of the prediction model was conducted by vibro-acoustic analysis with field measurements of noise radiation characteristics in receiving rooms.

  • PDF

Enhancement of Frequency Lines of Acoustic Signature in Vernier Analysis Using the Autocorrelation-based Postprocessing (Vernier 신호 분석에서 자기상관함수 기반의 후처리를 이용한 주파수선 음향징표 특징 강화)

  • Lee, Jungho;Bae, Keunsung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.546-555
    • /
    • 2013
  • In this paper, we propose a novel method to enhance the harmonic components from the frequency lines of the passive sonar signals. For this, we first separate the stable frequency lines from unstable ones using mean and difference of spectral bins in the vernier analysis. Then we emphasize the harmonic components using autocorrelation-based postprocessing, and enhance them by reducing the background noise with the split-window two pass mean algorithm. Experimental results for real underwater acoustic data are presented with our discussions.

Airborne Sound Insulation Performance of Window and Indoor Noise Level in the Balcony Expanded Apartments

  • Park, Hyeon Ku
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.61-67
    • /
    • 2015
  • Purpose: The balcony in the apartment is important space not only as a fire escape but also as a buffer for heat and sound insulation. However, with the legalization of balcony expansion for residential apartments in Korea in 2006, many households have eliminated the balcony space altogether to increase the inner space, often without sufficient consideration for the effects on the indoor environment. This study examined the sound insulation performance of exterior-facing windows in enclosed balconies and the changes in the indoor acoustic environment due to expansion to provide a basis for appropriate balcony expansion. The apartments for the field test were chosen where two balcony types can be compared, and the sound insulation performance for the eighteen balcony windows was measured. The windows installed were typical double window with thickness 16 mm or 22 mm. Measurements of the weighted standard sound pressure level difference showed a decrease of about 3 dB in sound insulation performance due to expansion. For common exterior noise levels of 70-85 dB(A), the indoor noise level can exceed 45 dB(A), the limit level regulated in Korea. However, it was found that the sound insulation performance of the window and the quality of the construction have more influence on indoor noise levels than balcony expansion itself.

Interior noise prediction of the high speed train using ray method (광음향기법을 이용한 한국형 고속전철의 실내소음 예측)

  • 김관주;박진규
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.157-164
    • /
    • 2000
  • This study is about predicting the interior pressure level of the korean high speed train using ray acoustic method. The motor car and the motor and passenger cabin are investigated under the environment of passing open countryside and inside tunnel of 350 km/hr. Calculated sound levels are compared with the proposed sound levels and suggestions about the transmission Joss values of isolating panels inside motor car and the guide lines of allowed sound power limit of motor equipments are provided. Results of TPI car show calculated interior sound level is below the proposed values for both cases of open countryside running and inside tunnel. Since ray acoustic method calculated only air borne noise component, real sound level of the motor car may be higher than prediction. Passenger cabins of TMI, TM5 show higher sound level than the proposed values, so window method was carried out to find the contribution of each panel components and point out the remedy of transmission path. Reduction of sound power of motor equipments should be condisered at the same time.

  • PDF

Reducing the Interior Noise of the Korean High-speed Train Using Geometric Acoustic Method (기하음향 기법을 적용한 한국형 고속철도 실내소음 저감 방안)

  • Kim, Kwan-Ju;Park, Jin-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.431-436
    • /
    • 2002
  • The interior sound pressure level of the Korean high-speed train(KHST) is predicted by geometrical acoustic method. For the Purpose of assuring the prediction of Interior noise of KHST by the geometrical acoustic scheme, calculated sound level values of the Korean train express(KTX) by Identical geometrical method are compared with measured values of KTX prototype vehicle by experiment. Contribution of individual sound source of KHST vehicle Into the interior response positions is calculated and sound sources are classified in influential order. Hence, it is reasonable approach to reduce sound power of most contributing noise source first. Sensitivity of the interior response position's sound pressure level (SPL) with respect to train wall sections' transmission loss are carried on and acoustically sensitive spot is identified, for example window area for passenger cabin case. Those contribution and sensitivity analysis results are suggested to design quieter train efficiently.

The Forward Prediction of Radiation Sound Field Using Acoustic Holography : Basic Theory and Signal Processing Method (음향 홀로그래피를 이용한 방사 음장의 전방예측 방법에 관한 기본 이론 및 신호처리 방법)

  • 김양한;권휴상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1654-1668
    • /
    • 1992
  • The acoustic field resulted by the radiation of sound from vibrating structure is predicted based on the sound pressure measurements. The sound pressures are measured at discreate point on the measurement plane ; Hologram. Based on these discreate measurements, the sound field away from the acoustic source is constructed based on the discreate form of Kirchhoff-Helmohltz integral equations The velocities, intensities, and pressures of arbitrary plane of interest in space are predicted and visualized The effects on the sound field reconstruction ; finite aperture effect, effect of finite sampling interval in space studied in terms of wraparound error and spatial aliasing. Numerical simulations and experimental verifications are performed to see these effects. To reduce the wraparound error, zero padding technique in space is used and the usefulness of the method is demonstrated by various examples.