• Title/Summary/Keyword: Acoustic resonance phenomena

Search Result 30, Processing Time 0.038 seconds

Development of Electronic Ballast Driving with Low Frequency Square Wave for MHD Lamps (구형 저주파 구동 MHD 램프용 전자식 안정기 개발)

  • Park, Chong-Yeun;Kim, Gi-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2562-2564
    • /
    • 1999
  • We have development the electronic ballast for metal halide discharge (MHD) lamp. The ballast consists of the boost pre-converter for power factor correction (PFC), a flyback a converter, half-bridge inverter and ignitor. To reject acoustic resonance phenomena, we have designed electronic ballast driving with the low frequency square wave. As results of this study, the ballast had not flicker phenomena and promoted corrected the factor (PF) highly

  • PDF

An Experimental Study on Noise Phenomena in Supersonic Over-expanded Jet (초음속 과팽창 제트에서 발생하는 소음현상에 관한 실험적 연구)

  • Kweon Yong-Hun;Lim Chae-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.337-340
    • /
    • 2006
  • The present paper describes an experimental work to investigate a transonic resonance in supersonic jet that is discharged from a convergent-divergent nozzle. When the nozzle m: at low nozzle pressure ratios, the shock occurs within the divergent section of the nozzle. The transonic resonance of a jet flow is generated by an emission of strong acoustic tones due to the unsteadiness of the shock. A Schlieren optical system is used to visualize the supersonic jet flow In order to specify the flow resonance of a jet, acoustic measurements are performed to obtain noise spectra. The acoustic characteristics of transonic resonace are compared with those of screech tones. The results obtained show that unlike screech frequency, the transonic reso- nace frequency somewhat increases with increasing the nozzle pressure ratio.

  • PDF

Acoustic-Resonance Reduction of Metal Halide Lamps Using Amplitude Modulation (진폭변조에 의한 메탈핼라이드 램프의 음향공명 감소)

  • 이치환
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.5
    • /
    • pp.43-49
    • /
    • 2000
  • In this paper, a new control method is presented to reduce acoustic resonance phenomena of metal halide lamps with electronic ballasts. A behavior of frequency controlled resonant inverter is analyzed and the transfer function is obtained. An integrator as a current controller for ballast is employed. By using both a disturbance of the lamp power and spread spectrum effects for reducing acoustic resonance, an amplitude modulation is done by using the current controller with 200[Hz] sinusoidal wave. Arc stabilities of MH 250[W] lamps are studied with changing the modulation index. Experiments with two MH 250[W] lamps, made by different manufacturers, showed the validity of the proposed method.

  • PDF

Study on Noise Characteristic of Open Cavity with Cross-Correlation Analysis (Cross-Correlation 해석을 통한 공동의 소음 특성 연구)

  • Heo Dae Nyoung;Kim Jae Wook;Lee Duck Joo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.755-758
    • /
    • 2002
  • The physical phenomena of rectangular open cavity are numerically investigated in this paper Two-dimensional cavity problems with laminar boundary layers in upstream are simulated by using the compressible Wavier-Stokes equations. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Cross-correlation is used to analyze the characteristics of wave propagation along time and spatial. Sudden phase shifting of 90 degrees is appeared near downstream edge, and this is coincident with the phase lag suggested in original Rossiter's equation. The results give a further understanding of the physical phenomenon of noise generation, and the resonance of flow and acoustic in cavity. Moreover, modified Rossiter's equation, which is more accurate and can be applied in various conditions, is suggested. The distance from the point of vortex generation to the point of vortex collapsing acts as effective distance of cavity resonance, and the phase difference between the point of vortex collapsing and the point of acoustic source acts as phase lag. The mechanism of acoustic generation is fully understood in this paper. The mechanism of acoustic generation is fully understood in this paper.

  • PDF

Electronic Ballast for Metal Halide Lamp with Free Voltage Input (프리볼트용 메탈할라이드램프 전자식 안정기)

  • Kwon Won-Mog;Chi Yun-Keun;Kim Nam-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.241-244
    • /
    • 2002
  • This paper presents the electronic ballast for the metal halide lamp with free voltage input and implemented for CDM-T[150W] lamp. HID lamps have a good color rendition, long life and good focusing capability but they have fickers by acoustic resonance when driven at high frequency. To reduce the acoustic resonance phenomena, the electronic ballast was designed for high frequency operation with the constant frequency sinusoidal wave of 75[kHz]. Finally, the experimental results on the ballast of CDM-T [150W]metal halide lamp with the propose methods are discussed.

  • PDF

The Development of the Buck Type Electronic Dimming Ballast for 250W MHL

  • Jung, Dong-Youl;Park, Chong-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.496-502
    • /
    • 2006
  • In this paper, we studied the development of the electronic ballast for 250W MH (Metal-Halide) lamps. We were able to improve the input power factor by using a PFC IC. To provide the lamp with the rated voltage required, we used the buck-type dc-dc converter. The stress of the switching devices in the inverter could be reduced by this method. To eliminate the acoustic resonance phenomena of MH lamps, the voltage of the lamp added the high frequency sine-wave to the low frequency square-wave by using the full bridge typed inverter. We have developed a simple igniter using the L and C elements. We could control the dimness of the lamp by varying the output voltage of the buck converter. The buck converter output voltage could be controlled by using a microprocessor.

Flow Visualization of Acoustic Streaming Induced by Ultrasonic Vibration Using Particle Imaging Velocimetry (PIV를 이용한 초음파 진동에 의해 유도된 음향유동의 가시화)

  • 노병국;권기정;이장연;이동렬
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.528-535
    • /
    • 2004
  • Ultrasonic Vibrator is designed to achieve the maximum vibration amplitude at 30 kHz by in-cluding a horn (diameter, 40 mm), mechanical vibration amplifier at the top of the ultrasonic vibrator in the system and making the complete system resonate. In addition, it is experimentally visualized by particle imaging velocimetry (PIV) that the acoustic streaming velocity in the gap is at maximum when the gap between the ultrasonic vibrator and stationary plate agrees with the multiples of half-wavelength of the ultrasonic wave. This fact results from the resonance of the sound wave and the theoretical analysis of that is also accomplished and verified by experiment. It is observed that the magnitude of the acoustic streaming dependent upon the gap between the ultrasonic vibrator and stationary plate possibly changes due to the measurement of the average velocity fields of the acoustic streaming induced by the ultrasonic vibration at resonance and non-resonance. There exists extremely small average velocity at non-resonant gaps while the relatively large average velocity exists at resonant gaps compared with non-resonant gaps. It also reveals that there should be larger axial turbulent intensity at the hub region of the vibrator and at the edge of it in the resonant gap where the air streaming velocity is maximized and the flow phenomena is conspicuous than that at the other region. Because the variation of the acoustic streaming velocity at resonant gap is more distinctive than that at non-resonant gap, shear stress increases more in the resonant gap and is also maximized at the center region of the vibrator except the local position of center (r〓0). At the non-resonant gap there should be low values of vorticity distribution, but in contrast to the non-resonant gap, high and negative values of it exist at the center region of the vibrator with respect to the radial direction and in the vicinity of the middle region with respect to the axial direction. Acoustic streaming is noise-free due to the ultrasonic vibration and maintenance-free because of the absence of moving parts. Moreover, the proposed method by acoustic streaming can be utilized to the nano and micro-electro mechanical systems as a driving mechanism in addition to the augmentation of the streaming velocity.

Design of Electronic Ballast Reducing Acoustic Resonances Phenomina in Metal Halide Discharge Tube (메탈 할라이드 방전관 내의 음향 공명을 감소시킨 전자식 안정기 설계)

  • 김기정;박종연
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.405-412
    • /
    • 1999
  • Meta! Halide Discharge(]\1HD) Iamps have good color rendition, long life and good focusing capability but h have flickers bv acoustic resonances. We have designed the electronic ballast for reducing acoustic resonances in high pressure discharge tube. The ballast consists of main two parts, the first part is a half-bridge inverter to make a square wave form a and the st'Cond part is a flyback converter to combine the low frequency and high frequency component. As a r result of this study, we conclude that MHD lamps of 70 watt 따c very well light(D without acoustic resonance p phenomena by the elestronic ballast.

  • PDF

A visual investigation of non-premixed flame behavior under acoustic excitation (음향 가진 하에서 비예혼합 화염거동에 관한 가시화 연구)

  • Lee, Kee-Man;Oh, Sai-Kee
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.871-877
    • /
    • 2001
  • Experimental study was conducted to investigate the effects of axial forcing on the flame structures near the nozzle exit of non-premixed flame. The most notable observation is that the direction of vortical motions is changed at some ranges, according to the increase of excitation amplitude. Especially, the elongation flame and the phenomenon of In-burning are always occurred when the vortical motion turnabout. In an analysis of the flame/flow visualization by means of direct photography and RMS technique, a plausible explanation can be made that above phenomena are related only to the amplitude of phase average velocity between the instantaneous velocity elements of excited flow.

  • PDF

APPROXIMATED SEPARATION FORMULA FOR THE HELMHOLTZ EQUATION

  • Lee, Ju-Hyun;Jeong, Nayoung;Kang, Sungkwon
    • Honam Mathematical Journal
    • /
    • v.41 no.2
    • /
    • pp.403-420
    • /
    • 2019
  • The Helmholtz equation represents acoustic or electromagnetic scattering phenomena. The Method of Lines are known to have many advantages in simulation of forward and inverse scattering problems due to the usage of angle rays and Bessel functions. However, the method does not account for the jump phenomena on obstacle boundary and the approximation includes many high order Bessel functions. The high order Bessel functions have extreme blow-up or die-out features in resonance region obstacle boundary. Therefore, in particular, when we consider shape reconstruction problems, the method is suffered from severe instabilities due to the logical confliction and the severe singularities of high order Bessel functions. In this paper, two approximation formulas for the Helmholtz equation are introduced. The formulas are new and powerful. The derivation is based on Method of Lines, Huygen's principle, boundary jump relations, Addition Formula, and the orthogonality of the trigonometric functions. The formulas reduce the approximation dimension significantly so that only lower order Bessel functions are required. They overcome the severe instability near the obstacle boundary and reduce the computational time significantly. The convergence is exponential. The formulas adopt the scattering jump phenomena on the boundary, and separate the boundary information from the measured scattered fields. Thus, the sensitivities of the scattered fields caused by the boundary changes can be analyzed easily. Several numerical experiments are performed. The results show the superiority of the proposed formulas in accuracy, efficiency, and stability.