• Title/Summary/Keyword: Acoustic pressure distribution

Search Result 102, Processing Time 0.026 seconds

Acoustic Characteristics of a Loudspeaker Obtained by Vibroacoustic Analysis (진동/음향 일방연성해석에 의한 스피커의 음향특성 연구)

  • 김준태;김정호;김진오;민진기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.153-159
    • /
    • 1996
  • The acoustic characteristics of a direct radiator type loudspeaker has been studied in this paper. The vibration displacement of the speaker cone paper obtained by the finite element analysis has been converted into the vibration velocity and used as a boundary condition for the acoustic analysis. The frequency characteristics and the sound pressure distribution of the loudspeaker resulted from the radiation of the cone vibration have been calculated by the boundary element analysis. The numerical results have been verified by experiments carried out in an anechoic chamber. The variations of the acoustic characteristics due to the changes of some design parameters have been examined using the numerical model.

  • PDF

Finite Element Analysis of Pressure Distribution by Ultrasound in Human Thigh Model (대퇴부 모델에서의 초음파 압력분포에 관한 유한요소 해석)

  • Choi, Ho-Seon
    • The Journal of Information Technology
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • Quantitative analysis for distribution of penetrating ultrasound in vivo is very important to determine the treatment region and method. In this paper, we constructed a simplified 2-D femoral region model that consists of skin-fat-muscle-bone layered system, and simulated the pressure distribution in the model in case of applying ultrasound using Finite Element Method(FEM). The ultrasound used in the simulation was assumed to be pulse wave and the pressure distribution was analyzed during only one period of pulse wave. In order to find the penetration depth, amplitude of pressure and sphere that ultrasound reaches in the model, we performed the simulation with varying the applied frequency, transducer size and amplitude of transducer's output. The result showed that applied frequency is inversely proportional to the penetration depth and amplitude of pressure but the amplitude of transducer's output is proportional to the amplitude of pressure in the model. Also, the sphere that ultrasound reaches was widened and the amplitude of pressure became larger as the transducer size became larger. This results were similar to that obtained from the previous model consisting of fat-muscle-bone layered system, but we observed that the pressure of ultrasound is decreased due to the decrements of pressure by the absorption coefficient of skin and the interference that depends on the reflection of ultrasound caused by the difference of acoustic impedance of skin and fat. Finally, we can infer that the model proposed in this study is closer to the realistic model than the previous ones. It shows that the results obtained from this study can be useful in designing the ultrasound treatment instrument or in setting up the treatment plan.

  • PDF

Experimental Study on Effect of Boiling Heat Transfer by Ultrasonic Vibration (초음파 진동이 비등열전달 과정에 미치는 영향에 관한 실험적 연구)

  • Na Gee-Dae;Oh Yool-Kwon;Yang Ho-Dong
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.35-44
    • /
    • 2006
  • This study experimentally investigates effect of boiling heat transfer when ultrasonic vibration was applied. Under the wall temperature condition, temperature distribution in a cavity was measured during the boiling process and heat transfer coefficient of convection, sub-tooled boiling and saturated boiling states were measured with and without ultrasonic vibration, respectively. Also, the profiles of the pressure distribution in acoustic field measured by a hydrophone were compared with the augmentation ratios of heat transfer calculated by local heat transfer coefficient. Result of this study, heat transfer coefficient and augmentation ratio of heat transfer is higher with ultrasonic waves than without one. Especially, augmentation ratio of heat transfer is more increased the convection state than sub-cooled boiling and saturated boiling states. Acoustic pressure is relatively higher near ultrasonic transducer than other points where is no installed it and affects the augmentation ratio of heat transfer.

An Experimental Study on Acoustic Absorption in a Model Chamber with a Half-Wave Resonator (반파장 공명기를 장착한 모형연소실의 흡음특성에 대한 실험적 연구)

  • Sohn, Chae-Hoon;Park, Ju-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.34-40
    • /
    • 2008
  • Acoustic design parameters of a half-wave resonator are studied experimentally for acoustic stability in a model chamber. According to the standard acoustic-test procedures, acoustic-pressure signals are measured. Quantitative acoustic properties of damping factor and sound absorption coefficient are evaluated and thereby, the acoustic-damping capacity of the resonator is examined. The diameter and the number of a half-wave resonator, its distribution, and the diameter of an enclosure are selected as the design parameters for optimal tuning of the resonator. Aroustic-damping capacity of the resonator increases with its diameter. When the open-area ratio of the resonator exceeds the optimum value, over-damping appears, leading to the decrease in the peak absorption coefficient and the broadening of absorption bandwidth. As the resonator diameter increases, optimum open-area ratio decreases.

Effect of Source Line Location on Lift-off Acoustic Loads of a Launch Vehicle (음원 분포선 위치가 발사체 이륙 음향하중에 미치는 영향)

  • Choi, Sang-Hyeon;Ih, Jeong-Guon;Lee, Ik-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.539-545
    • /
    • 2015
  • Intense acoustic load is generated when a launch vehicle lifts off, causing the damaging vibrations at the launch vehicle or satellite within the fairing. This paper is concerned with the prediction of lift-off acoustic loads for a launch vehicle. As a test example, the lift-off acoustic load on the Korean launch vehicle, NARO, is predicted by the existing calculation tool, the modified Eldred's second method. Although the acoustic sources, assumed as point sources, are to be located along the center line of the exhaust plume when using the Eldred's prediction method, the exact location of the deflected center line of exhaust gas flow is not usually known. To search for the most appropriate source positions, six models of source line distribution are suggested and the acoustic load prediction results from these models are compared with the actual measurements. It is found that the predicted sound pressure spectrum of the Naro is the most similar to the measured data when the centerline of the turbulent kinetic energy contour is used as the source line.

Application of Ultrasonic for agglomeration of fine soot particles (미세 매연입자의 응집을 위한 초음파장의 적용)

  • Jeong, Sang-Hyun;Hong, Won-Seok;Shim, Sung-Hun;Kim, Yong-Jin;Lee, Sung-Bum
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.41-49
    • /
    • 2003
  • Ultrasonic field of 28kHz with sound pressure level 162dB has been employed to agglomerate the fine soot particle produces in a diffusion flame in a chamber. The agglomeration process has been investigated with digital camcorder and analysed in terms of the decrease of number density with exposure time. From the observation of agglomeration process, the initial agglomeration has been carried out during the short time, and it has been dominated by the orthokinetic collision. Thereafter, a slower agglomeration mechanism, driven by acoustic streaming in the chamber takes over and agglomeraters grew to diameters of several millimeters were levitated at the pressure node of the acoustic wave. And, the circular disk shape of large agglomeraters with the rotational and translational motion is observed.

  • PDF

Development of a Far Field type Megasonic for Nano Particle Removing (나노입자 제거용 Far Field 메가소닉 개발)

  • Lee, Yanglae;Kim, Hyunse;Lim, Euisu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1193-1201
    • /
    • 2013
  • Improved far field type(improved type) megasonic applicable to the cleaning equipment of single wafer processing type has been developed. In this study, to improve the uniformity of acoustic pressure distribution(APD), we utilize far field with relatively uniform APD, piezoelectric ceramic with a triangle hole in its center to prevent standing wave resulted from radial mode, and reflected wave from the wall of waveguide. On the basis of these methods, two analysis models of improved type were designed to which piezoelectric ceramic of different shape of electrode attached, and APD were analyzed by means of finite element method, and then one of them was selected by analysis results, finally, the selected model was fabricated. Test results show that the fabricated is better in the uniformity of APD than the imported and the conventional, also the fabricated shows high particle removal efficiency of 92.3% using DI water alone as a cleaning solution.

Evaluate the Effect of Megasonic Cleaning on Pattern Damage (메가소닉 세정시 발생되는 패턴손상 최소화에 대한 연구)

  • Yu, Dong-Hyun;Ahn, Young-Ki;Ahn, Duk-Min;Kim, Tae-Sung;Lee, Hee-Myoung;Kim, Jeong-In;Lee, Yang-Lae;Kim, Hyun-Se;Lim, Eui-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2511-2514
    • /
    • 2008
  • As the minimum feature size decreases, techniques to avoid contamination and processes to maintain clean wafer surfaces have become very important. The deposition and detachment of nanoparticles from surfaces are major problem to integrated circuit fabrication. Therefore, cleaning technology which reduces nanoparticles is essential to increase yield. Previous megasonic cleaning technology has reached the limits to reduce nanoparticles. Megasonic cleaning is one of the efficiency method to reduce contamination nanoparticle. Two major mechanisms are active in a megasonic cleaning, namely, acoustic streaming and cavitation. Acoustic streaming does not lead to sufficiently strong force to cause damage to the substrates or patterns. Sonoluminescence is a phenomenon of light emission associated with the cavitation of a bubble under ultrasound. We studied a correlation between sonoluminescence and sound pressure distribution for the minimum of pattern damage in megasonic cleaning.

  • PDF

A study on the relationship between acoustic modes in tire-wheel guard space and high frequency road noise (타이어-휠가드 공간의 음장모드와 고주파성 로드노이즈의 상관성 연구)

  • Lee, Jong Hyun;Ku, Yo Cheon;Lee, Jin Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.288-294
    • /
    • 2016
  • The space between tire and wheel guard acts as a path for tire pattern noise transmission. In this study, acoustic phenomenon occurring in the tire-wheel guard space is investigated using acoustic mode analysis and visualization of the sound pressure distribution over the wheel guard surface. We introduced a cavity over the wheel guard surface to reduce the tire pattern noise, where the cavity acts as an acoustic damper. The interior noise was reduced by 2 dB(A), and the noise control measures treated in this study may provide an efficient method to improve interior sound quality without increasing cost and weight at the final stage of the vehicle development.