• Title/Summary/Keyword: Acoustic finite element method

Search Result 251, Processing Time 0.023 seconds

Application of Substructure Synthesis Method for Analysis of Acoustic System (음향계의 해석을 위한 부분구조합성법의 적용)

  • 오재응;고상철;조용구
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.737-746
    • /
    • 1997
  • The substructure synthesis method is used for making it easy to analyze vibration systems generally in vibration field. In the past, this method has been to be used mainly because of shortage of computer memory and CPU time. But recently this method is used for analyzing complex structure or identifying the characteristics of systems precisely. The purpose of this study is to develop acoustic substructure synthesis method that can be applied to acoustic modal analysis of complex acoustic systems. Acoustic modal analysis method to be introduced here is a method that analyze acoustic natural mode shape of the complex acoustic system by the principle of CMS(component mode synthesis method). This paper describes the acoustic modal analysis of the acoustic finite element model of simple expansion pipe by acoustic substructure synthesis method. The resutls of acoustic modal analysis analyzed by Acoustic substructure synthesis method and the results by FEM(finite element method) shows good agreement.

  • PDF

A Vibration Mode Analysis of Resilient Mounting System and Foundation Structure of Acoustic Enclosure using Finite Element Method (유한요소법을 이용한 음향차폐장치용 탄성마운트 시스템 및 받침대의 진동모드 해석)

  • 정우진;배수룡;함일배
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.493-501
    • /
    • 1999
  • The vibration modes of resilient mounting system and foundation structure which support diesel engine/generator set and acoustic enclosure walls play an important role in the vibration transmission process. So, it is necessary to perform vibration mode analysis of resilient mounting system and foundation structure. For some reasons, if the vibration modal analysis of resilient mounting system and foundation structure of acoustic enclosure could be simultaneously done by finite element method, it would be very efficient approach. In this paper, vibration modal analysis method using finite element method for multi stage mounting system having n d.o.f model was proposed. Vibration analysis of single and double stage resilient mounting system was performed to verify the validity of the proposed method. Also frequency response results were compared in case of rigid foundation model and finite element foundation model which was compared with experimental modal analysis results.

  • PDF

Applicatio of Finite Element and Boundary Element Methods to Predict Steady-State Response of a Structure-Acoustic-Cavity System (구조-음향계의 정상상태 응답예측을 위한 유한요소법과 경계요소법의 응용)

  • Lee, Cang-Myung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1383-1391
    • /
    • 1996
  • The steady-state response for a coupled structure-acoustic-cavity systme has been investigated by numerical technique using a directly coupled finite element method(FEM) and Boundary Element Method(BEM) model. The Laplace tranformed matrix equations for the structure and the acoustic cavity are coupled directly satisfying the necessary equilibrium and compatibility conditions. The coupled FEM-BEM code is verified by comparing its prediction for an example with known analytical, numerical and experimental results. The example involves a coupled structure-acoustic-cavity system which is a box-type cavity with one end as experimentally excited pinned-pinned plate.

An Analysis of Internal & External Duct Acoustic Fields by Using a Finite Element Method (유한요소법을 이용한 도관 내부 및 외부 음장해석)

  • 이재규;이덕주
    • Journal of KSNVE
    • /
    • v.3 no.2
    • /
    • pp.169-178
    • /
    • 1993
  • Internal & External duct acoustic fields are calculated by using a finite element method. The geometry is assumed as an axisymmetric duct. External acoustic field; outside the duct, and combined internal & external acoustic fields are solved. For both cases a far field's nonreflecting boundary condition is enforced by using a wave envelope element, which is a kind of finite element. First, a pulsating sphere and an oscillating sphere problem are calculated to verify the external problems, and the results are compared with exact solutions. When the wave envelope element is applied at the far boundary, the calculated finite element solutions show good agreements with the exact solutions. Secondly, the combined internal & external duct acoustic fields are calculated and visualized when monopole sources are distributed inside the duct. It is observed that the directivity of sound intensity outside the duct is beaming toward the axis for high frequency sources.

  • PDF

A Study on Dynamic and Acoustic Behavior of Beel Type Structure Using Finite Element Method (유한요소법을 이용한 종형 구조물의 동적거동 및 음향거동에 관한 연구)

  • 정석주
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.447-456
    • /
    • 1996
  • Dynamic characteristics of the bell-type structure including acoustic effects and transient dynamic problems were analyzed numerically. Natural frequencies, mode shapes and transient dynamic analysis used the finite element method with 3-D general shell element. Mode shapes and stress distributions of transient dynamic analysis were expressed by computer graphics. The method using this study was evaluated by comparision of theoretical results at reference papers(14), (15) and the experimental test using Fast Fourier Transform analyzer. Vibrational modes governing acoustic characteristics of the typical bell-type structure depended on the first flexural mode(4-0 mode) and the second flexural mode(6-0 mode). Asymmetric effects by Dangiwas, acoustic holes gave rise to beat frequencies, and the Dangjwa was found to be most effective. When impact load acted on the bell, stress concentration occured at the rim part of bell. It was found that the bell type structure should be designed thickly at the rim part in order to prevent impact load from stress concentration.

  • PDF

Multi-Domain Structural-Acoustic Coupling Analysis Using the Finite Element and Boundary Element Techniques

  • Ju, Hyeon-Don;Lee, Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.555-561
    • /
    • 2001
  • A new approach to analyze the multi-domain acoustic system divided and enclosed by flexible structures is presented in this paper. The boundary element formulation of the Helmholtz integral equation is used for the internal fields and the finite element formulation for the structures surrounding the fields. We developed a numerical analysis program for the structural-acoustic coupling problems of the multi-domain system, in which boundary conditions such as the continuity of normal particle velocity and sound pressure in the structural interfaces between Field 1 and Field 2 are not needed. The validity of the numerical analysis program is verified by comparing the numerical results with the experimental ones. Example problems are included to investigate the characteristics of the coupled multi-domain system.

  • PDF

An Analysis of Aircraft Engine Inlet Acoustic Fields by using Finite Element Method (유한 요소법을 이용한 비행기 엔진 입구 음향장 해석)

  • 전완호;이덕주
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.122-131
    • /
    • 1998
  • Internal and external acoustic fields of the engine inlet are calculated by using a finite element method. The far fields non reflecting boundary condition is enforced by using a wave envelope element, which is a kind of infinite element. The geometry is assumed an axisymetric duct. Sources of the fan are modeled by the Tyler and Sofrin's theory. Effects of uniformly moving medium are considered. A pulsating sphere and an oscillating piston problem are calculated to verify the external problems, and compared with exact solutions. When the wave envelope element is applied at the far boundary, the calculated finite element solutions show good agreements with the exact solutions. The engine inlet is solved with the combined internal and external grid. The cut-off phenomena on engine inlet duct are observed.

  • PDF

Vibro-acoustic Analysis of Adjoined Two Rooms Using 3-D Power Flow Finite Element Method (3차원 파워흐름유한요소법을 이용한 인접한 두 실내에서의 진동음향 해석)

  • Kim, Sung-Hee;Hong, Suk-Yoon;Kil, Hyun-Gwon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.74-82
    • /
    • 2010
  • Power flow analysis(PFA) methods have shown many advantages in noise predictions and vibration analysis in medium-to-high frequency ranges. Applying the finite element technique to PFA has produced power flow finite element method(PFFEM) that can be effectively used for analysis of vibration of complicated structures. PFADS(power flow analysis design system) based on PFFEM as the vibration analysis program has been developed for vibration predictions and analysis of coupled structural systems. In this paper, to improve the function of vibro-acoustic coupled analysis in PFADS, the PFFEM has been extended for analysis of the interior noise problems in the vibro-acoustic fully coupled systems. The vibro-acoustic fully coupled PFFEM formulation based on energy coupled relations is extended to structural system model by using appropriate modifications to structural-structural, structural-acoustic and acoustic-acoustic joint matrices. It has been applied to prediction of the interior noise in two room model coupled with panels, and the PFFEM results are compared to those of statistical energy analysis(SEA).

Acoustic Analysis and Design of a Direct-Radiator-Type Loudspeaker (직접방사형 스피커의 음향특성 해석및 설계)

  • 김준태;김정호;김진오
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.274-282
    • /
    • 1998
  • A systematic procedure for designing a direct-radiator-type loudspeaker has been developed, based on the numerical vibro-acoustic analysis and the Taguchi method. The finite-element model of the speaker cone has been used to calculated the vibration response of the cone excited by the voice coil. The vibration displacement of the speaker cone has been converted into the vibration velocity and used as a boundary condition for the acoustic analysis. The acoustic frequency characteristics of the loudspeaker have been calculated by the boundary element method. The numerical results have been verified by the experiments carried out in an anechoic chamber. Some design parameters have been selected by using the Taguchi method, and the variations of the acoustic characteristics due to the changes of the parameter values have been examined using the numerical model.

  • PDF

Development of Sound Radiation Analysis System Using the Results of Power Flow Finite Element Method (파워흐름유한요소법의 진동해석 결과를 이용한 구조물의 방사소음 해석시스템 개발)

  • 이호원;홍석윤
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.21-30
    • /
    • 2001
  • The analysis system implementing a serial process from structural vibration to sound radiation has been developed using both the power flow finite element method (PFFEM) known as a new vibrational analysis technique in medium to high frequency ranges and the acoustic boundary element method (BEM) which is effective in analyzing the sound radiation problems. The vibration analysis for arbitrary shape structures composed of plates is performed, and using the vibration energy density obtained from this analysis as the velocity boundary conditions for an acoustic analysis, vibro-acoustic analysis has been processed. To verify the developed system, we select a simple structure model and compare the results of developed system with those of SYSNOISE, and also the developed system is applied for the vibro-acoustic analysis of various structures in shapes.

  • PDF