• Title/Summary/Keyword: Acoustic fields

Search Result 254, Processing Time 0.022 seconds

A Study on Correlation Between Pressure Variations and Augmentation of Heat Transfer in Acoustic Fields

  • Oh, Yool-Kwon;Yang, Ho-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1630-1639
    • /
    • 2004
  • The present paper investigated the correlation between the acoustic pressure variations and the augmentation of heat transfer in the ultrasonic induced acoustic fields. The augmentation ratios of heat transfer coefficient were experimentally measured and were compared with the profile of the pressure distribution in the acoustic fields predicted by numerical analysis. For numerical analysis, a coupled finite element-boundary element method (coupled FE-BEM) was applied. The results of the present study reveal that the acoustic pressure is higher near two ultrasonic transducers than other points where no ultrasonic transducer was installed. The augmentation trend of heat transfer is similar with the profile of the acoustic pressure distribution. In other words, as the acoustic pressure increases, the higher augmentation ratio of heat transfer is obtained. Numerical and experimental studies clearly show that the acoustic pressure variations are closely related to the augmentation of heat transfer in the acoustic fields.

The Effect of Acoustic Fields Formed in Heat Transfer Process (음향장이 열전달 과정에 미치는 영향)

  • Yang, Ho-Dong;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1603-1608
    • /
    • 2003
  • The Present Study reported on the experimental and numerical results of heat transfer in the acoustic fields induced by ultrasonic waves. The strong upwards flow called as acoustic streaming was visualized by a particle image velocimetry (P.I.V). in addition, the augmentation of heat transfer was experimentally investigated in the presence of acoustic streaming and was compared with the profiles of acoustic pressure calculated by the numerical analysis. Experimental and numerical studies clearly show that acoustic pressure variations are closely related to the augmentation of heat transfer.

  • PDF

An Analysis of Internal & External Duct Acoustic Fields by Using a Finite Element Method (유한요소법을 이용한 도관 내부 및 외부 음장해석)

  • 이재규;이덕주
    • Journal of KSNVE
    • /
    • v.3 no.2
    • /
    • pp.169-178
    • /
    • 1993
  • Internal & External duct acoustic fields are calculated by using a finite element method. The geometry is assumed as an axisymmetric duct. External acoustic field; outside the duct, and combined internal & external acoustic fields are solved. For both cases a far field's nonreflecting boundary condition is enforced by using a wave envelope element, which is a kind of finite element. First, a pulsating sphere and an oscillating sphere problem are calculated to verify the external problems, and the results are compared with exact solutions. When the wave envelope element is applied at the far boundary, the calculated finite element solutions show good agreements with the exact solutions. Secondly, the combined internal & external duct acoustic fields are calculated and visualized when monopole sources are distributed inside the duct. It is observed that the directivity of sound intensity outside the duct is beaming toward the axis for high frequency sources.

  • PDF

Acoustic Scattering from Circular Cylinder by Periodic Sources (주기적인 음원에 의한 원형 실린더의 음향 산란)

  • Lee, Duck-Joo;Kim, Yong-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.41-47
    • /
    • 2007
  • Scattering fields of two dimensional acoustic waves by a circular cylinder are investigated. The present numerical approach for the acoustic scattering problem has difficulties of numerical robustness, long-time stability and suitability of far-field boundary treatments. The time-dependent periodic acoustic source is used to analyze Interference patterns between incident waves and waves reflected by the cylinder. Characteristic boundary algorithms coupled with 4th order Modified-Flux-Approach ENO(essentially non-oscillatory) schemes are employed in generalized coordinates to examine the effect of the wane frequency on the interference patterns. Non-reflecting boundary conditions, which is crustal for accurate computations of aeroacoustic problems, are used not to contaminate scattering fields by reflected waves at the outer boundary. Computed scattering fields show the circumferential acoustic modes generated by interacting between acoustic sources and scattered waves. At a lower frequency, the wave passes almost straight through the cylinder without Interacting with circular cylinder. Simulation results are presented and compared with the analytic solution. Computed RMS-pressure distribution on the cylinder wall is good agreement with exact solution.

A Study on the Characteristics of the Acoustic Reflection of the Wedge Shaped Underwater Sound Absorptive Tile (쐐기형 수중음파 흡수타일의 음반사 특성 연구)

  • Kang, Sung-Oug;Hong, Woo-Young;Song, Yeong-Il;Lyu, Ki-Sang;Baek, Chil-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.45-50
    • /
    • 1997
  • Four different wedge angle absorptive tiles were designed and made, and the magnitudes of the reflected acoustic fields by the wedge shaped underwater sound absorptive tiles were measured. The minimum magnitude was found at the angle of 30$^{\circ}$ and the maximum of it was found at the wedge angle of 120$^{\circ}$ from measured the reflected acoustic fields at the front sides of the tiles. The fact that as wedge angle of the absorptive tile increases, the reflection coefficient is increasing is verified. The measured reflected acoustic fields were not dependent on the frequency in the range of 10kHz~30kHz used in this experiment for the same wedge angle tile. The measured reflected acoustic fields at the back sides of the tiles show that they are independent from both type of the absorptive tiles and the frequencies used in the experiments. The measured values and the computed values by the numerical model for the reflected acoustic fields of the wedge shaped absorptive tiles are fairly well comparable with one another.

  • PDF

Study on Smart Cooling Technology by Acoustic Streaming Generated by Ultrasonic Vibration Using 3D PIV (3차원 PIV를 활용한 초음파 진동에 의해 발생된 음향 유동을 이용한 스마트 냉각법 연구)

  • Lee, Dong-Ryul;Loh, Byoung-Gook;Kwon, Ki-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1078-1088
    • /
    • 2010
  • In order to analyze the quantitative characteristics of acoustic streaming, experimental setup of 3-D stereoscopic PIV(particle imaging velocimetry) was designed and quantitative ultrasonic flow fields in the gap between the ultrasonic vibrator and heat source were measured. Utilizing acoustic streaming induced by ultrasonic vibration, surface temperature drop of cooling object was also measured. The study on smart cooling method by acoustic streaming induced by ultrasonic vibration was performed due to the empirical relations of flow pattern, average flow velocity, different gaps, and enhancement on cooling rates in the gap. Average velocity fields and maximum acoustic streaming velocity in the open gap between the stationary cylindrical heat source and ultrasonic vibrator were experimentally measured at no vibration, resonance, and non-resonance. It was clearly observed that the enhancement of cooling rates existed owing to the acoustic air flow in the gap at resonance and non-resonance induced by ultrasonic vibration. The ultrasonic wave propagating into air in the gap creates steady-state secondary eddy called acoustic streaming which enhances heat transfer from the heat source to encompassing air. The intensity of the acoustic streaming induced by ultrasonic vibration experimentally depended upon the gap between the heat source and ultrasonic vibrator. The ultrasonic vibration at resonance caused the increase of the acoustic streaming velocity and convective heat transfer augmentation when the flow fields by 3D stereoscopic PIV and temperature drop of the heat source were measured experimentally. The acoustic streaming velocity of air enhancement on cooling rates in the gap is maximal when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which is specifically 12 mm.

A Study on the Enhancement of Phase Change Heat Transfer in Acoustic Fields (음향장 내의 상변화 열전달 촉진에 관한 연구)

  • 양호동;나기대;오율권
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.152-160
    • /
    • 2004
  • The present study investigates on the experimental and numerical results of heat transfer in the acoustic fields induced by ultrasonic waves. The strong upwards flow which moves from the bottom surface in a cavity to the free surface called as "acoustic streaming" was visualized by a particle image velocimetry (PIV). In addition, the augmentation ratio of heat transfer was experimentally investigated in the presence of acoustic streaming and was compared with the profiles of acoustic pressure calculated by the numerical analysis. A coupled finite element-boundary element method (FE-BEM) was applied for a numerical analysis. The results of experimental and numerical studies clearly show that acoustic pressure variations caused by ultrasonic waves in a medium are closely related to the augmentation of heat transfer.

Multi-Domain Structural-Acoustic Coupling Analysis Using the Finite Element and Boundary Element Techniques

  • Ju, Hyeon-Don;Lee, Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.555-561
    • /
    • 2001
  • A new approach to analyze the multi-domain acoustic system divided and enclosed by flexible structures is presented in this paper. The boundary element formulation of the Helmholtz integral equation is used for the internal fields and the finite element formulation for the structures surrounding the fields. We developed a numerical analysis program for the structural-acoustic coupling problems of the multi-domain system, in which boundary conditions such as the continuity of normal particle velocity and sound pressure in the structural interfaces between Field 1 and Field 2 are not needed. The validity of the numerical analysis program is verified by comparing the numerical results with the experimental ones. Example problems are included to investigate the characteristics of the coupled multi-domain system.

  • PDF

Indentification of Noise Source of a Diesel Engine using Complex Acoustic Intensity Method (복소음향인텐시티법을 이용한 디젤엔진의 소음원 규명)

  • 오재응;김상헌;한광희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.182-195
    • /
    • 1998
  • The relation between the vibration induced from machinery and the radiated sound is complicated. Acoustic intensity method is widely used to obtain the accuracy of noise identification. In this study, as groundwork, the complex acoustic intensity method is performed to identify noise source and transmission path on different free space point source fields. From the numerical analysis for these simple fields, it is possible to predict the sound field characteristics which noise sources are related with each other, and certificate the validity of complex acoustic intensity. As an industrial application, the complex acoustic intensity method is applied a diesel engine to identify sound radiation characteristics in the near field.

  • PDF

A Study on the Structural-acoustic Analysis Modeling Methods of the Room with Heavy Impact Noise Source (중량충격원 충격에 따른 공동주택 실내공간의 구조음장 해석 모델링방법에 관한 연구)

  • Lee, Jae-Kwang;Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.9 no.6
    • /
    • pp.81-87
    • /
    • 2009
  • The purpose of the present study is to establish structural noise analyzing method for apartments building floor with structural-acoustic coupling analysis modeling. Noise through floor in the room is recognized as a significant problem with the consequence that noise isolation technique has been studied in the various fields of industry. From among noise factors, resonance sound is the main reason for solid noise of the floor, which is occurred by mechanical vibrations of the acoustic boundary line and the change of velocity. To analyse this phenomenon, numerical computation methods are provided in many fields, In this study, evaluation method for slab is established using finite element method, and a case study for analyzing acoustic phenomenon was suggested. The results show that numerical method, especially F.E.M, has a good approximation to predict noise at floors.