• Title/Summary/Keyword: Acoustic Scattering

Search Result 212, Processing Time 0.022 seconds

SONAR transducer analysis using a coupled FE-BE method (결합형 유한요소-경계요소 기법을 사용한 쏘나 트랜스듀서의 분석)

  • 장순석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1750-1753
    • /
    • 1997
  • This paper describes how the directivity pattern of the back-scattered sound pressure is distributed when a plane acoustic wave is incident on a righid spherical shell underwater. A coupled Finite Element-Boundary Element mehtod is developed as numerical technique. The result of the coupled FE-BE method is agreed with theoretical solution for algorithmic confirmation.

  • PDF

Problems of Acousto-Optic Tunable Filters for WDM Optical Switching

  • Song, G. Hugh
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.210-215
    • /
    • 1995
  • Technology development toward the use of LiNbO3-based acoustic tunable filters as WDM 2$\times$2 cross-connect switches is reviewed. Recenly, it was found that a fundamental behavior of multi-wavelength Bragg scattering critically affects the crosstalk performance of the acousto-optic tunable filter. We revuew serveral reported methods of overcoming the performance degradation. We will eventually ask whether the device is up to task of WDM optical switching.

  • PDF

Performance Characteristics of a Chirp Data Acquisition and Processing System for the Time-frequency Analysis of Broadband Acoustic Scattering Signals from Fish Schools (어군에 의한 광대역 음향산란신호의 시간-주파수 분석을 위한 chirp 데이터 수록 및 처리 시스템의 성능특성)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.2
    • /
    • pp.178-186
    • /
    • 2018
  • A chirp-echo data acquisition and processing system was developed for use as a simplified, PC-based chirp echo-sounder with some data processing software modules. The design of the software and hardware system was implemented via a field-programmable gate array (FPGA). Digital signal processing algorithms for driving a single-channel chirp transmitter and dual-channel receivers with independent TVG (time varied gain) amplifier modules were incorporated into the FPGA for better real-time performance. The chirp-echo data acquisition and processing system consisted of a notebook PC, an FPGA board, and chirp sonar transmitter and receiver modules, which were constructed using three chirp transducers operating over a frequency range of 35-210 kHz. The functionality of this PC-based chirp echo-sounder was tested in various field experiments. The results of these experiments showed that the developed PC-based chirp echo-sounder could be used in the acquisition, processing and analysis of broadband acoustic echoes related to fish species identification.

A preliminary study on seabed classification using a scientific echosounder

  • FAJARYANTI, Rina;KANG, Myounghee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.1
    • /
    • pp.39-49
    • /
    • 2019
  • Acoustics are increasingly regarded as a remote-sensing tool that provides the basis for classifying and mapping ocean resources including seabed classification. It has long been understood that details about the character of the seabed (roughness, sediment type, grain-size distribution, porosity, and material density) are embedded in the acoustical echoes from the seabed. This study developed a sophisticated yet easy-to-use technique to discriminate seabed characteristics using a split beam echosounder. Acoustic survey was conducted in Tongyeong waters, South Korea in June 2018, and the verification of acoustic seabed classification was made by the Van Veen grab sampler. The acoustic scattering signals extracted the seabed hardness and roughness components as well as various seabed features. The seabed features were selected using the principal component analysis, and the seabed classification was performed by the K-means clustering. As a result, three seabed types such as sand, mud, and shell were discriminated. This preliminary study presented feasible application of a sounder to classify the seabed substrates. It can be further developed for characterizing marine habitats on a variety of spatial scales and studying the ecological characteristic of fishes near the habitats.

Estimation of swimming angle and body impedance of sandfish (Arctoscopus japonicus) (도루묵의 체내 임피던스 및 유영자세각 평가)

  • YOON, Euna;HWANG, Doo-Jin;OH, Wooseok;LEE, Hyungbeen;LEE, Kyounghoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.2
    • /
    • pp.121-129
    • /
    • 2022
  • Density and sound speed contrasts (g and h, respectively), and swimming angle were measured for sandfish (Arctoscopus japonicus) without swimbladder. The density contrast was measured by the volume displacement method while the sound speed contrast was measured by the acoustic measurements of travel time (time-of-flight method). The swimming angle was measured by dividing it into daytime, nighttime, daytime feeding and nighttime feeding. The g was 1.001 to 1.067 with an average (± standard deviation) of 1.032 (± 0.017), and the h was 1.007 to 1.022 with an average (± standard deviation) of 1.015 (± 0.003). The swimming angles (mean ± standard deviation) were 16.8 ± 10.3° during the daytime, 1.9 ± 12.3° during the nighttime, 30.2 ± 12.6° in the daytime feeding and 35.0 ± 13.2° in the nighttime feeding. These results will provide important parameters input to calculate theoretical scattering models for estimating the acoustic target strength of sandfish.

Modeling of Scattered Signal from Ship Wake and Experimental Verification (항적 산란신호의 모델링과 실험적 검증)

  • Ji, Yoon-Hee;Lee, Jae-Hoon;Kim, Jea-Soo;Kim, Jung-Hae;Kim, Woo-Shik;Choi, Sang-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.10-18
    • /
    • 2009
  • A moving surface vessel generates a ship wake which contains a cloud of micro-bubbles with radii ranging between $8{\sim}200{\mu}m$. Such micro-bubbles can be detected by active sonar system for more than ten minutes depending on the size and speed of the surface vessel. In this paper, a reverberation model for the ship wake is presented. The developed model consists of the acoustic scattering model due to the distribution of the micro-bubbles and the kinematic model for the moving active sonar. The acoustic scattering model is based on the volume integration, where the volume scattering strengths are obtained from the spatial distribution of micro-bubbles. Since the directivity and look-direction of active sonar are important factors for moving active sonar, the kinematic model utilizes the Euler transformation to obtain the relative motion between the global and local coordinates. In order to verify the developed model, a series of sea experiment was executed in September 2007 to obtain the spatial-temporal distribution of a bubble cloud, and analyzed to be compared with the simulation results.

An acoustic and trawl pilot survey using a small vessel in Jinhae bay of the South Sea of South Korea (진해만에서 수행된 소형선박을 이용한 음향과 트롤 시험조사)

  • PARK, Junseong;LEE, Jeong-hoon;HWANG, Kangseok;CHA, Hyung Kee;PARK, Junsu;KANG, Myounghee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.1
    • /
    • pp.24-35
    • /
    • 2016
  • An acoustic and trawl pilot survey using a small vessel was conducted in Jinhae bay of the South Sea of South Korea on April 13~14, May 11~13 and June 8~10, 2015. During the survey, acoustic data was collected and bottom trawls were conducted at the same time. First, various noises were eliminated by using the Park method based on the Wang method (Wang et al., 2015; Park et al., 2015), the species compositions and catch rate from each bottom trawl were observed, and spatial distribution of fishery resources in the water column and their nautical area scattering coefficient (NASC) were investigated through acoustic data. During the entire survey period, 12 orders, 33 families and 41 species were caught. The most caught species in April, May and June were Okamejei kenojei, Zoarces gilli and Pholis nebulosa, respectively. Fish schools were observed near the line of net mouth height in April. Numerous weak scatters were presented on the echograms in May and June. Many fish schools appeared in between the water surface and 20 m deep in May. The NASC value from entire water columns was the lowest in April ($35.9m^2/n{\cdot}mile^2$) and highest in June ($1541.3m^2/n{\cdot}mile^2$).

Characteristics of Acoustic Scattering according to Pulsation of the Large Jellyfish Nemopilema nomurai (노무라입깃해파리의 박동에 따른 음향산란 특성)

  • Yoon, Eun-A;Hwang, Doo-Jin;Hirose, Miyuki;Kim, Eun-Ho;Mukal, Tohru;Park, Byung-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.5
    • /
    • pp.551-556
    • /
    • 2010
  • The large jellyfish Nemopilema nomurai causes serious damage to fisheries, particularly around the seas of Korea and Japan. Decreasing this damage requires knowledge of the distribution and abundance of jellyfish. Acoustic technology using quantitative echosounders is one method of studying the distribution and abundance of jellyfish. Such methods are commonly used worldwide because they have the advantage of providing substantial information about all water layers in a wide area in a short time. However, in order to conduct an acoustic survey, the acoustic characteristics of the target organism must be known. These can be altered by a number of factors, including pulsation, swimming angle, frequency and size. Accordingly, this study determined the variation in target strength according to pulsation of N. nomurai. Data were analyzed for two jellyfish with bell diameters in air of (a) was 32.0 and (b) 25.0 cm. The pulsation cycle of jellyfish (a) was 1.5~2.0 sec and the target strength (TS) cycle was 1.0~2.5 sec, while jellyfish (b) had a pulsation cycle of 1.0~1.5 sec and TS cycle of 1.0~3.0 sec. The variation width of the TS with the change in pulsation was 7.8 dB (-72.4~-64.6 dB) for jellyfish (a) and 10.3 dB (-71.6~-61.3 dB) for jellyfish (b). The variation in bell diameter was about 0.28 and 0.35, respectively. These results confirmed that the variation in bell diameter caused by pulsation is closely related to the variation in TS.

Density Estimation of Japanese Common Squid Todarodes pacificus Using Multi-frequency (다중주파수를 이용한 살오징어(Todarodes pacificus)의 분포밀도 추정)

  • Shin, Hyoung-Ho;Jung, Jongil;Lee, Hyoungbeen;Oh, Wooseok;Park, Geunchang;Lee, Kyounghoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.6
    • /
    • pp.1023-1029
    • /
    • 2021
  • The Japanese common squid Todarodes pacificus is one of the fish species within the total allowable catch (TAC) system which requires further investigation. In this study, the acoustic survey method was used to analyze the distribution of the Japanese common squid Todarodes pacificus across all the seas of South Korea. The sea area within Korea was investigated using the research vessels 20, 21, and 22 of the National Institute of Fisheries Science. The acoustic surveys were carried out from July to September 2019 and February to May 2020. The acoustic systems used in the survey had frequencies of 38 kHz and 120 kHz (EK60, EK80, Simrad, Norway) of the split-beam scientific echosounder. The results showed that, in spring, 277 m2/nmi2 was the highest in the east sea area, and the same in the summer season 880 m2/nmi2 was the highest in the east sea area. In autumn, the highest nautical area scattering coefficient (NASC) value was observed in the coastal portion of the south sea, and in winter, the NASC values were generally low in all the sea area.

Properties of aggregation and spatial distribution of fish in the South Sea of Korea using hydroacoustic data (수산음향기법의 주파수에 따른 남해안의 어류의 군집 및 공간분포 특징)

  • HWANG, Kangseok;PARK, Jeong-Ho;LEE, Jeonghoon;CHA, Hyung-Kee;PARK, Junseong;KANG, Myounghee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.4
    • /
    • pp.325-338
    • /
    • 2016
  • Properties of aggregation and spatial distribution of fish were examined based on three lines in the South Sea of Korea using three frequencies (18, 38, and 120 kHz) of a scientific echosounder. The vertical distribution of fish was displayed using acoustic biomass namely nautical area scattering coefficient (NASC). As a result, at 120 kHz high NASC showed from water surface to 20 meters in deep while at 18 and 38 kHz very high NASC presented in 70 ~ 90 meters in depth, especially at line 3. Among three lines, the line 2 had lowest NASC. The horizontal distribution of fish using three frequencies together exhibited high NASC between the eastern South Sea and center of South Sea. In especial, NASC ($801{\sim}1,920m^2/n{\cdot}mile^2$) was observed along coastal waters from Busan to Tongyeong, Geoje, and Namhae. In regard with the property of aggregation of fish schools, the volume back-scattering strength ($S_V$) of three lines presented close each other, however, the range of $S_V$ in the line 2 was shortest (-53.5 ~ -43.4 dB). The average distributional depth was deep in the order of L3 ($32.8{\pm}9.0m$), L1 ($45.2{\pm}9.5m$), L2 ($49.7{\pm}5.6m$). The average altitude was high in the order of L3 ($13.4{\pm}10.3m$), L1 ($17.0{\pm}12.6m$), L2 ($56.7{\pm}5.6m$). The average length, thickness, and area were large in the order of L1, L3, and L2. This means that small sized fish schools were distributed near water surface in the line 2 while relatively large and similar sized fish aggregations between line 1 and line 3 appeared however, fish schools at line 3 had lower distributional depth and smaller compared to those at line 1. Acoustic data were visualized for demonstrating the entire circumstances of survey area. Additionally, there was no correlation between acoustic and trawl results.