• Title/Summary/Keyword: Acoustic Measurement

Search Result 896, Processing Time 0.026 seconds

Study of Fracture Toughness Measurement and Fracture Stability Evaluation by Acoustic Emission Method (음향 방출법에 의한 파괴 인성치 측정 및 파괴 안정성 평가를 위한 연구)

  • 이강용;백충헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.96-104
    • /
    • 1989
  • The behaviors of acoustic emission emitted in the tests of the fracture toughness and fracture stability are observed by using the specimens of aluminum 2024-T351 and 7039-T6 alloys. The empirical eqution of J-R curve is derived. It is demonstrated from the comparison of the fracture toughness obtained from J-R curve with that from ASTM standard E813-81 that the latter is larger than the former. The discontinuous point in the log-log graph of J-integral vs. total acoustic emission count is observed in between the two offset lines referred from ASTM standard E813-81, but it's physical meaning is uncretain. An empirical material tearing modulus is derived in terms of the total acoustic emission count and proved to be valid in fracture instability test.

A study of noise source identification on plate excited structure borne sound by acoustic intensity method (음향인텐시티법에 의한 고체진동 가진판의 소음원 검출에 관한 연구)

  • 오재응;김상헌;홍동표;이찬홍
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.43-55
    • /
    • 1986
  • In the studies of noise reduction, it is important to know the generation mechanism of noise in order to identify the noise source. The relation between the structural vibration and the radiated sound is very complex and so this paper deals with a simplified radiation model that was originally developed as a verification tool for the acoustic intensity measurement procedure. As the first step for the identification of the noise source, this study deals with the noise evaluation by measuring sound pressure. On the next step, the acoustic radiational pattern is determined by the acoustic intensity method and this paper established that the acoustic intensity method is effective on the detection of noise. In the study, furthermore, the method could be used to predict the change in the sound radiational characteristics with the attachment of absorber and could be used in determining the attachment position.

  • PDF

Acoustic Measurement of English read speech by native and nonnative speakers

  • Choi, Han-Sook
    • Phonetics and Speech Sciences
    • /
    • v.3 no.3
    • /
    • pp.77-88
    • /
    • 2011
  • Foreign accent in second language production depends heavily on the transfer of features from the first language. This study examines acoustic variations in segments and suprasegments by native and nonnative speakers of English, searching for patterns of the transfer and plausible indexes of foreign accent in English. The acoustic variations are analyzed with recorded read speech by 20 native English speakers and 50 Korean learners of English, in terms of vowel formants, vowel duration, and syllabic variation induced by stress. The results show that the acoustic measurements of vowel formants and vowel and syllable durations display difference between native speakers and nonnative speakers. The difference is robust in the production of lax vowels, diphthongs, and stressed syllables, namely the English-specific features. L1 transfer on L2 specification is found both at the segmental levels and at the suprasegmental levels. The transfer levels measured as groups and individuals further show a continuum of divergence from the native-like target. Overall, the eldest group, students who are in the graduate schools, shows more native-like patterns, suggesting weaker foreign accent in English, whereas the high school students tend to involve larger deviation from the native speakers' patterns. Individual results show interdependence between segmental transfer and prosodic transfer, and correlation with self-reported proficiency levels. Additionally, experience factors in English such as length of English study and length of residence in English speaking countries are further discussed as factors to explain the acoustic variation.

  • PDF

A Study on the Technology to Diagnose GIS with Acoustic Emission by Dropping Particles Method (이물 낙하법에 의한 GIS 초음파 진단 기술 연구)

  • Kim, Gwang-Hwa;Choe, Jae-Gu;Seon, Jong-Ho;Kim, Ik-Su;Yun, Jin-Yeol;Park, Gi-Jun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.246-252
    • /
    • 2002
  • This paper describes the acoustic emission measurement method to diagnose GIS for particles. We measured and analyzed the signals of acoustic waves using acoustic two types sensors with 125KHz and 50KHz resonant frequency respectively when the particles were dropped on the surfaces of circular plates and inside of GlS tanks. We found that the difference between peak outputs of two sensors depended on the types and materials of particles and the conditions of dropping position. These results showed that the outputs of 125KHz sensor were higher than those of 50KHz sensor in circular plate and 362㎸ GIS tank made of steel and vice versa in circular plate and 800㎸ GIS tank made of aluminum. The ratios outputs of 125KHz sensor to those of 50KHz sensor were 1.4 - 2.37 in 800㎸ GIS tank and were 0.5 - 1.0 in 362㎸ GIS tank. Therefore we knew that adaption of two types acoustic sensors which had different resonant frequencies as a very useful method in diagnosis of GIS.

Analysis of Living Noise in a Multi-unit Dwelling using Acoustic Simulation

  • Yang, Ginam;Ann, Joon-suk;Kim, Daewon;Kim, Gwang-Hee;Shin, Yoonseok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.87-96
    • /
    • 2016
  • More than half of Korea's urban population currently lives in multi-unit dwellings. This particular residence structure inevitably positions the living spaces of residents in close proximity to one another. Because of this proximity, the sounds of a particular household will transfer to other residents' units creating conflict between tenants. Efforts to alleviate this problem have been made in both the public and private sector. A prominent method of noise analysis between living units has been to make an actual sound measurement and obtain qualitative measurements from questionnaires. Although this method has been most widely used, such analysis requires a large amount of human effort and time. In addition, the questionnaire method fails to provide the objective information needed to accurately assess the noise situation. To overcome the inadequacies of this previous method, this study seeks to evaluate the applicability of an acoustic simulation method. Three types of living noises were analyzed to assess the noise levels passed between multi-unit dwellings. The acoustic simulation method was found to be more economical, efficient, and adaptable in information processing. The results of this study can be further applied to design and control living-noise through procedures such as acoustic absorption or space redesign.

Optimization for the direction of arrival estimation based on single acoustic pressure gradient vector sensor

  • Wang, Xu-Hu;Chen, Jian-Feng;Han, Jing;Jiao, Ya-Meng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.1
    • /
    • pp.74-86
    • /
    • 2014
  • The optimization techniques are explored in the direction of arrival (DOA) estimation based on single acoustic pressure gradient vector sensor (APGVS). By analyzing the working principle and measurement errors of the APGVS, acoustic intensity approaches (AI) and the minimum variance distortionless response beamforming approach based on single APGVS (VMVDR) are deduced. The radius to wavelength ratio of the APGVS must be not bigger than 0.1 in the actual application, otherwise its DOA estimation performance will degrade significantly. To improve the robustness and estimation performance of the DOA estimation approaches based on single APGVS, two modified processing approaches based on single APGVS are presented. Simulation and lake trial results indicate that the performance of the modified approaches based on single APGVS are better than AI and VMVDR approaches based on single APGVS when the radius to wavelength ratio is not bigger than 0.1, and the two modified DOA estimation methods have excellent estimation performance when the radius to wavelength ratio is bigger than 0.1.

Influence of Nasometer Structure on Nasalance for Speech Therapy (언어치료환자를 위한 비음측정기 모듈의 구조가 비음치 산출에 미치는 영향)

  • Woo, Seong Tak;Park, Y.B.;Kim, J.Y.;Oh, D.H.;Ha, J.W.;Na, S.D.;Kim, M.N.
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.157-166
    • /
    • 2019
  • With the development of medical technology, interest in rehabilitation devices is increasing and various devices are being studied. In particular, devices for speech disorders such as hearing impairment and cleft palate are attracting attention. In general, the nasometer is used for patients with flaccid dysarthria and velopharyngeal incompetence(VPI). However, in the case of the conventional separator type nasometer, that has an acoustic feedback problem between the oral and nasal sounds. In recent, the mask type nasometer has been developed which is insensitive to acoustic feedback. But, still not popularized. In this paper, the nasometer characteristics of the conventional separation type and mask type are analyzed. Also, We were obtained clinical acoustic data from the 6 subjects and examined the significant differences in the structure of the separation type and mask type nasometer. Through experiments, it was confirmed that the measurement was about 3~15% higher in the mask type nasometer than the conventional nasometer having a separator type. Also, We was considered the necessity of nasometer signal processing for acoustic feedback reduction and nasalance calculation optimization.

Acoustic Estimation of Phase Velocity of Closed-Cell Kelvin Structure based on Spectral Phase Analysis

  • Kim, Nohyu
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.339-345
    • /
    • 2022
  • In this paper, the effect of porosity on the acoustic phase velocity of the 3D printed Kelvin closed-cell structure was investigated using the spectral phase analysis. Since Kelvin cells bring about the large amount of scattering, acoustic pulses in ultrasonic measurements undergoes a distortion of waveforms due to the dispersion effect. In order to take account on the dispersion, mathematical expressions for calculating the phase velocity of longitudinal waves propagating normal to the plane of the Kelvin structure are suggested by introducing a complex wave number based on Fourier transform. 3D Kelvin structure composed of identical unit-cells, a polyhedron of 14 faces with 6 quadrilateral and 8 hexagonal faces, was developed and fabricated by 3D CAD and 3D printer to represent the micro-structure of porous materials such as aluminum foam and cancellous bone. Total nine samples of 3D Kelvin structure with different porosity were made by changing the thickness of polyhedron. Ultrasonic pulse of 1MHz center frequency was applied to the Kelvin structures for the measurement of the phase velocity of ultrasound using the TOF(time-of-flight) and the phase spectral method. From the experimental results, it was found that the acoustic phase velocity decreased linearly with the porosity.