• 제목/요약/키워드: Acoustic Fluid

검색결과 302건 처리시간 0.027초

발전용 밸브누설 음향 진단 및 감시시스템 (Acoustic Valve Leak Diagnosis and Monitoring System for Power Plant Valves)

  • 이상국
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.425-430
    • /
    • 2008
  • To verify the system performance of portable AE leak diagnosis system which can measure with moving conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured during operation on total 11 valves of the secondary system in nuclear power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, type of valve, pressure difference, valve size and fluid. The results of this field study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve. The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18 ". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

유체기계에 있어서 부의 음원 임피던스의 원인에 관한 고찰 (A Review of the Possible Causes of Negative Source Impedance in Fluid Machines)

  • 이정권
    • 한국음향학회지
    • /
    • 제20권3호
    • /
    • pp.76-82
    • /
    • 2001
  • 대부분의 유체기계는 일정 조건하에서는 주기적인 소음 원들로 간주될 수 있으며, 소음원 및 관련 덕트의 음향계를 주파수영역으로 표현이 가능하게 되는데, 음원은 주파수의 함수인 음원강도와 음원 임피던스로 표현된다. 이들 변수를 알아내기 위하여는 다양한 이론적, 실험적 방법이 있으나, 고속, 고온, 고강도의 유체 기계와 같은 단일 연결구를 갖는 음원에 대하여는 다양한 길이의 많은 관들을 부하로 사용하는 다부하법만이 적용 가능하다. 문제는 이 다부하법을 적용했을 때, 음원 임피던스의 실수부가 부의 값을 갖는 경우가 많다는 점이다. 본 논문에서는 이 문제의 명확한 원인분석을 위한 일환으로서, 다양한 이론적 실험적 결과에 대한 분석을 바탕으로 하여 가능한 여러 가지 원인에 대한 물리적 조사 결과를 보이고, 분석 결과에 대한 새로운 해석을 통해 기본 가정의 위배와 함께 다부하법 자체의 문제점을 제시한다 유체 기계 덕트에서는 다른 무엇보다도 음원의 시변성이 부의 음원저항을 낳는데 가장 큰 영향을 미치게 되며, 부하 임피던스가 최종 결과에 지대한 영향을 미치게 된다.

  • PDF

후드겸용 전자레인지 시로코홴의 유동 및 소음특성에 관한 연구 (A study on the flow and aeroacoustic characteristics of the sirocco fan of OTR (Over The Range))

  • 전완호;류호선;송성배;손상범
    • 한국유체기계학회 논문집
    • /
    • 제7권1호
    • /
    • pp.17-23
    • /
    • 2004
  • Aeroacoustic characteristics of sirocco fan used in Over-The-Range (OTR) has been analyzed in this paper. A microwave hood combination over the gas range is short for the OTR. The flow phenomena of the double-sided sirocco fan was analyzed numerically and experimentally by using commercial code and three dimensional PIV for flow visualization. Also, microphone array is used in order to understand acoustic characteristics of OTR. Two dimensional unsteady flow and acoustic simulation is tried to qualitatively estimate the effects of tonal noise and broadband noise on the overall sound pressure level. It is found that tonal sound is generated from the strong interaction between the impeller and cutoff while broadband sound is generated from the strong secondary flows along the scroll surface. To reduce the noise level, the V-shape cut-off was applied to improve the sound quality by reducing tonal noise. So the peak noise at BPF (Blade Passing Frequency) was almost reduced. The shape of flow-guide to suppress the secondary flow over the scroll surface was carefully checked. It is found that this affects flow pattern at the fan exit and reduces the broad band noise. Through this numerical and experimental study, the sound pressure level was lowered by 4dBA compared to that of the previous fan at the operating point.

DLP용 유체동압베어링 스핀들모터 (Fluid Dynamic Bearing Spindle Motors for DLP)

  • 김응철;성세진
    • 전기학회논문지P
    • /
    • 제60권2호
    • /
    • pp.82-90
    • /
    • 2011
  • The small precision spindle motors in the high value-added products including the visible home appliances such as DLP projector require not only the energy conversion devices but also high efficiency, low vibration and sound operation. However, the spindle motors using the conventional ball bearing and sintered porous metal bearing have following problems, respectively: the vibration by the irregularity of balls and the short motor life cycle by the ball's abrasion and higher sound noises by dry contact between shaft and sleeve. In this paper, it is proposed that the spindle motor with a fluid dynamic bearing is suitable for the motor to drive the color wheel of the DLP(digital lightening processor) in the visible home appliances. The proposed spindle motor is composed of the fluid dynamic bearing with both the radial force and the thrust force. The fluid dynamic bearing is solved by the finite element analysis of the mechanical field with the Reynolds equations. The magnetic part of spindle motor, which is a type of Brushless DC Motor, is designed by the electro-magnetic field analysis coupled with the Maxwell equation. And the load capacity and the friction loss of fluid dynamic bearing are analyzed to bearing clearance variation by the fabrication error in designed motor. The design of the proposed motor is implemented by the load torque caused by the eccentricity and the unbalance of the fluid dynamic bearing when the motors are fabricated in error. The prototype of the motor with the fluid dynamic bearing is manufactured, and experiment results show the vibration, sound, and phase current at no load and color wheel load of the motors in comparison. The high performance characteristics with the low vibration, the low acoustic noise and the optimal mechanical structure are verified by the experimental results.

On mixing the Rayleigh-Ritz formulation with Hankel's function for vibration of fluid-filled functionally graded cylindrical shell

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Shahzad, Aamir;Taj, Muhammad;Asghar, Sehar;Fatahi-Vajari, Alireza;Singh, Rahul;Tounsi, Abdelouahed
    • Advances in Computational Design
    • /
    • 제5권4호
    • /
    • pp.363-380
    • /
    • 2020
  • In this paper, a cylindrical shell is immersed in a non-viscous fluid using first order shell theory of Sander. These equations are partial differential equations which are solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the Rayleigh-Ritz procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. Throughout the computation, simply supported edge condition is used. Expressions for modal displacement functions, the three unknown functions are supposed in such way that the axial, circumferential and time variables are separated by the product method. Comparison is made for empty and fluid-filled cylindrical shell with circumferential wave number, length- and height-radius ratios, it is found that the fluid-filled frequencies are lower than that of without fluid. To generate the fundamental natural frequencies and for better accuracy and effectiveness, the computer software MATLAB is used.

Application of Hamilton variational principle for vibration of fluid filled structure

  • Khaled Mohamed Khedher;Muzamal Hussain;Rizwan Munir;Saleh Alsulamy;Ayed Eid Alluqmani
    • Advances in nano research
    • /
    • 제15권5호
    • /
    • pp.401-410
    • /
    • 2023
  • Vibration investigation of fluid-filled three layered cylindrical shells is studied here. A cylindrical shell is immersed in a fluid which is a non-viscous one. Shell motion equations are framed first order shell theory due to Love. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the wave propagation approach procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. It is also exhibited that the effect of frequencies is investigated by varying the different layers with constituent material. The coupled frequencies changes with these layers according to the material formation of fluid-filled FG-CSs. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped (C-C), simply supported-simply supported (SS-SS) frequency curves are higher than that of clamped-simply (C-S) curves. Expressions for modal displacement functions, the three unknown functions are supposed in such way that the axial, circumferential and time variables are separated by the product method. Computer software MATLAB codes are used to solve the frequency equation for extracting vibrations of fluid-filled.

유체와 접한 판재에 박힌 압전센서의 유한요소 모델링 (Finite Element Modeling of a Piezoelectric Sensor Embedded in a Fluid-loaded Plate)

  • ;김재환
    • 소음진동
    • /
    • 제6권1호
    • /
    • pp.65-70
    • /
    • 1996
  • 유체와 접한 판재에 박힌 압전센서의 응답을 복합적인 유한요소 해석기법을 이용하여 모델링 하였다. 판재 구조물은 유체영역에서 전파되는 음향파에 의해서 가진된다. 구조물과 압전소자 주위의 유에부분을 유한요소기법을 써서 모델링였고 임의로 나눈 가상경계에서는 평면과 해를 적용하여 변위를 일치 시켰다. 또한, 이 경계에서 변위의 번분까지도 Penalty factor를 써서 일치 시켰으며 가상경계에서의 투명성을 증가시키기 위해서 유한요소의 각 절점에 회전자유도를 추가시켰다. 압전 센서 응답의 수치 결과가 구하여졌고 이것은 센서의 삽입효과가 적을 뿐만 아니라 구조물의 특성에 민감하다는 것이 밝혀졌다.

  • PDF

유체-밸브-피스톤 연성을 고려한 선형압축기 토출 밸브의 소음 해석 (Noise Analysis of Discharge Valve in a Linear Compressor Considering Fluid-valve-piston Interactions)

  • 이준호;정의봉;한형석;이효재;정상우
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1237-1243
    • /
    • 2009
  • A computational procedure to estimate the noise radiated from a discharge valve system in a linear compressor was discussed and established. This procedure was composed of three steps. As the first step, the dynamic behavior of the valve system was estimated taking into consideration of fluid-valve-piston interactions. As the second step, the flow characteristics of refrigerant in the discharge valve system were estimated through computational fluid dynamics applying the behaviors of the valves as moving boundary conditions. The variations of pressures and velocities of fluid were converted to quadrupole noise sources. As the final step, the boundary element method based on Helmholtz equation was applied to predict the radiated acoustic pressure. The computational results by the presented procedure were experimentally validated.

주파수 해상도 증가를 위해 Zoom FFT 기법을 사용한 ADCP 음향신호처리 (Acoustic Signal Processing for ADCP using Zoom FFT Method to increase Frequency Resolution)

  • 한진현;심태보
    • 대한전자공학회논문지SP
    • /
    • 제47권5호
    • /
    • pp.229-234
    • /
    • 2010
  • 본 논문에서는 수심이 낮은 곳에서도 ADCP(Acoustic Doppler Current Profiler)를 사용할 수 있도록 주파수 해상도를 높이는 음향신호처리 기법을 제안하였다. ADCP는 유속을 측정하는 장치이다. 일반적으로 바다에서 사용하는 ADCP는 수심의 제약이 없어서 300K Hz 이하의 중심주파수를 사용할 수 있으나 하천의 경우는 가뭄이 길어지면 수심이 30cm 이하도 나타나기 때문에 사용하기 힘들다. 따라서 기존의 신호처리 방법으로는 수심이 낮은 하천에서 유속을 측정하기 매우 어렵다. 본 연구에서는 낮은 하천의 수심을 고려하여 Zoom FFT 방법을 이용하여 유속을 추정하는 연구를 시뮬레이션해본 결과 이론적으로는 약 ${\pm}62\;cm/s$ 정도의 오차를 줄일 수 있었고, 실험적으로는 약 ${\pm}93\;cm/s$ 정도의 오차가 줄어들었다. 실험에서도 기존의 알고리즘으로 추정이 안 되었던 것이, 유속 20 cm/s 이상에서는 유속 추정이 가능하였다.

쓰로틀 밸브의 빠른 열림 동작에 의한 내부공력소음 (Internal Aerodynamic Noise from Quick Opening Throttle Valve)

  • 정철웅;김성태;김재헌;이수갑
    • 한국소음진동공학회논문집
    • /
    • 제14권4호
    • /
    • pp.310-318
    • /
    • 2004
  • For many industrial problems originating from aerodynamic noise, noise prediction techniques, reliable and easy to apply, would be of great value to engineers and manufacturers. General algorithm is presented for the prediction of internal flow-induced noise from quick opening throttle valve in an automotive engine. This algorithm is based on the integral formula derived by using the General Green Function, Lighthill's acoustic analogy and Curle's extension of Lighthill's. Novel approach of this algorithm is that the integral formula is so arranged as to predict frequency-domain acoustic signal at any location in a duct by using unsteady flow data in space and time, which can be provided by the Computational Fluid Dynamics Techniques. This semi-analytic model is applied to the prediction of internal aerodynamic noise from a throttle valve in an automotive engine. The predicted noise levels from the throttle valve show good agreement with actual measurements. The results show that the dipole noise is dominant in this phenomena and the origin of noise sources is attributed to the anti-vortex lines formed in the down-stream from a throttle valve. This illustrative computation shows that the current method permits generalized predictions of flow noise generated by bluff bodies and turbulence in flow ducts.