• Title/Summary/Keyword: Acoustic Finite Element Analysis

Search Result 256, Processing Time 0.027 seconds

Variation of Radiation Impedance for Piston Source According to Baffle

  • Park, Soon-Jong;Kim, Moo-Joon;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.46-50
    • /
    • 2001
  • The characteristics of radiation impedance are analyzed by algorithms which consists of Finite Element Method (FEM) and Hybrid type Infinite Element Method. The changes of radiation impedance for piston source according to the size and the material properties of baffles are studied. The results of the radiation impedance for rigid finite baffle coincide with other reports. The more the material properties of baffle that comes across the acoustic medium, the more the calculation results of radiation impedance approach the ones without baffle. Therefore, these results can be applied to the design and the radiation characteristics analysis of acoustic transducers.

  • PDF

Finite Difference Time Domain Analysis for Film Bulk Acoustic Wave Resonator used in Microwave Region (시간 영역 유한 차분법(FDTD)을 이용한 마이크로파 대역의 압전 박막 공진기 해석)

  • 송영민;정재호;이용현;이정희;최현철
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.489-492
    • /
    • 2000
  • Film Bulk Acoustic Wave Resonator(FBAR) used in microwave region was analyzed with Finite Difference Time-Domain Methods(FDTD) in this paper. FBAR have been analyzed with one dimensional Mason model analysis or Finite Element methods(FEM), but the first couldn't analyze effect of area variation and spurious characteristics, the second had difficulty in element separation because of thin electrode. So in this paper FBAR was analyzed by Finite Difference Time-Domain Methods and it's results were transformed to frequency domain using Discrete Fourier Transform.

  • PDF

Noise reduction of a vehicle acoustic cavity sample using coupled Structural-Acoustic element analysis (구조-음향 연성해석을 통한 모형차실 모델의 소음저감 기술연구)

  • 김태정;강성종;서정범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.288-294
    • /
    • 1994
  • A study of prediction and qualification techniques for structure borne booming noise is presented in this paper. Result from acoustic normal mode finite element analysis of a 1/2 size vehicle cavity sample model is compared to the that from an experiment. Coupled structural-acoustic analysis is performed on a 1/4 size vehicle cavity sample model surrounded by 2 mm thick normal steel plates. Interior noise levels around passensger's ear position are predicted and reduced by structural modification based on panel participation factor analysis about the sample cavity model. Futhermore, optimization technique in application of anti-vibration pad is studied.

  • PDF

Acoustic Characteristics Analysis of the Axi-symmetric Transducer by the combined Finite Element Method and Hybrid Type Infinite Element Method, Part I ; Radiation Impedance, Directivity and Transducer Coupling Effect (유한요소법과 하이브리드형 무한요소법의 결합에 의한 축대칭 변환기의 음향 특성해석 ( I ) ; 방사임피던스, 지향성 및 압전자간의 결합효과)

  • Yoon, Jong-Rak;Yoon, Hyeong-Kyu;Kim, Dae-Whan;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.60-67
    • /
    • 1994
  • This is the first of two companion papers which suggests the algorithm of the combined Finite Element Method and Infinite Element Method for the analysis of the axi-symmetric acoustic transducer in the open boundary. Using the algorithm, the numerical analysis for the transducer radiation impedance, directivity, and coupling effect between transducer elements are also conducted. In the second paper, the wideband array transducer is designed and its acoustic characteristics are examined on the basis of the results of the first paper.

  • PDF

Structure-Acoustic Coupling Analysis of a Pipe Using the Beam Element (보 요소를 이용한 파이프의 구조-음향 연성해석)

  • 서영수;정의봉;정호경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.282-287
    • /
    • 2004
  • Noise and vibrations in the pipe systems may be arisen from pumps. compressors, etc. The source mechanism is classified with the mechanical and hydraulic. Mechanical vibrations may be excited by the unbalance in rotating machinery. Hydraulic source may be generated in the turbulent flow. The vibro-acoustic behaviour of flexible, fluid-filled pipe system is a very complex and determined by two parameters: the frequency and the mass ratio of fluid and pipe wall. As the frequency increases, the mode number in the pipe increases. The mass ratio is close to one, the structure and the fluid are strongly coupled. In ease the diameter is very small to the length of pipe, the behaviour of pipe is same as a beam. The finite element formulation when the fluid and the structure are coupled is derived by using beam element. The Numerical results are compared with the package (Sysnoise) which is using the shell element.

  • PDF

Numerical and Experimental Investigation on Structure-acoustic Coupling Effect in a Reverberant Water Tank (잔향수조의 구조-음향 연성효과에 관한 수치 및 실험적 고찰)

  • Park, Yong;Kim, Kookhyun;Cho, Dae-Seung;Lee, Jong-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Underwater acoustic power should be measured in a free field, but it is not easy to implement. In practice, the measurement could be performed in a reverberant field such as a water-filled steel tank and concrete tank. In this case, the structure and the acoustic field are strongly or weakly coupled according to material properties of the steel and water. So, characteristics of the water tank must be investigated in order to get the accurate underwater acoustic power. In detail, modal frequencies, mode shapes of the structure and frequency response functions of the acoustic field could represent the characteristics of the reverberant water tank. In this paper, the structure-acoustic coupling has been investigated on a reverberant water tank numerically and experimentally. The finite element analysis has been carried out to estimate the structural and acoustical modal parameters under the dry and water-filled conditions, respectively. In order to investigate the structure-acoustic coupling effect, the numerical analysis has been performed according to the structure stiffness change of the water tank. The acoustic frequency response functions were compared with the numerical analysis and acoustic exciting test. From the results, the structural modal frequencies of the water-filled condition have been decreased compared to those of the dry condition in the low frequency range. The acoustic frequency response functions under the coupled boundary conditions showed different patterns from those under the ideal boundary conditions such as the pressure release and rigid boundary condition, respectively.

Finite Element Method Analysis of Film Bulk Acoustic Resonator (유한 요소법(FEM)을 이용한 압전 박막 공진기(FBAR)의 공진 모드 해석)

  • 송영민;정재호;이용현;이정희;최현철
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.95-98
    • /
    • 2000
  • Film bulk acoustic resonator used in microwave region can be analyzed by one-dimension Mason's model and one-dimensional numerical method, but it had several constraints to analyze effects of area variation, electrode-area variation, electrode-shape variation and spurious characteristics. To overcome these constraints film bulk acoustic resonator must be analysed by three dimensional numerical method. So, in this paper three dimensional finite element method was used to analyze several moles of resonance and was compared with the one dimension Mason's model analysis and analytic solution.

  • PDF

Improvement of Sound Quality for an Electro-Acoustic Guitar Using Finite Element Analysis (유한요소 해석을 통한 전기 어쿠스틱 기타의 음질향상)

  • Lee J.M.;Park Y.W.;Im K.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.857-860
    • /
    • 2005
  • A guitar pickup transforms the vibration of strings to the electric signals, and deliveres them to an amplifier. A piezo pickup has interference problem between strings. The paper aims to improve sound quality for an electro-acoustic guitar through the finite element analysis. Firstly the conventional pickup is modeled and analyzed with a commercial program called ANSYS. It is obvious that there exists interference between the strings. The structural modification of the pickup is performed, based on the beam theory The modified structures are suggested, modeled and analyzed. Then the result are compared with those in the conventional pickup. It can be concluded that the interferences with the modified structures are much less than those with the conventional structure.

  • PDF

Designing a Loudspeaker by Acoutsic Analysis and Taguchi Method (음향해석과 다구치법에 의한 스피커 설계)

  • 김준태;김정호;김진오
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.568-574
    • /
    • 1998
  • A systematic procedure for designing a direct-radiator-type loudspeaker has been developed, based on a numerical vibro-acoustic analysis and the Taguchi method. The finite-element model of the speaker cone has been used to calculate the vibration response of the cone excited by the voice coil. The vibration response of the speaker cone has been used as a boundary condition for the acoustic analysis, and the acoustic frequency characteristics of the loudspeaker have been calculated by the boundary element method. The numerical model has been confirmed by comparing the numerical results with experimental ones obtained in an anechoic chamber. Some design parameters contributing dominantly to the acoustic characteristics have been selected by using the Taguchi method, and the variations of the acoustic characteristics due to the changes of the parameter values have been examined using the numerical model.

  • PDF

A Study on the Enhancement of Phase Change Heat Transfer in Acoustic Fields (음향장 내의 상변화 열전달 촉진에 관한 연구)

  • 양호동;나기대;오율권
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.152-160
    • /
    • 2004
  • The present study investigates on the experimental and numerical results of heat transfer in the acoustic fields induced by ultrasonic waves. The strong upwards flow which moves from the bottom surface in a cavity to the free surface called as "acoustic streaming" was visualized by a particle image velocimetry (PIV). In addition, the augmentation ratio of heat transfer was experimentally investigated in the presence of acoustic streaming and was compared with the profiles of acoustic pressure calculated by the numerical analysis. A coupled finite element-boundary element method (FE-BEM) was applied for a numerical analysis. The results of experimental and numerical studies clearly show that acoustic pressure variations caused by ultrasonic waves in a medium are closely related to the augmentation of heat transfer.