• Title/Summary/Keyword: Acoustic Emission 음향방출

Search Result 553, Processing Time 0.026 seconds

Pre-service Acoustic Emission Testing for Metal Pressure Vessel (금속압력용기의 사용 전 음향방출시험)

  • Lee, Jong-O;Yoon, Woon-Ha;Lee, Tae-Hee;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.280-284
    • /
    • 2003
  • The field application of acoustic emission(AE) testing for brand-new metal pressure vessel were performed. We will introduce the test procedure for acoustic emission test such as instrument check distance between sensors, sensor location, whole system calibration, pressurization sequence, noise reduction and evaluation. The data of acoustic emission test contain many noise signal, these noise can be reduced by time filtering which based on the description of observation during AE test.

Application of Acoustic Emission Technique for Bridge Cable Monitoring (교량 케이블 적용 강연선 모니터링을 위한 음향방출 기법 검토)

  • Kim, Ga-Young;Seo, Dong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.121-125
    • /
    • 2018
  • This paper presents the assessment of 7-wire strand monitoring using acoustic emission technique for bridges. 7-wire strand is widely used construction materials to provide additional tensile force to bridges. PSC (PreStressed Concrete) bridge and cable-stayed bridge are representatives for such cases. However, as the bridge aging progresses recently, corrosion problems of strand are emerging. For this reason, various NDT (Non-Destructive Test) methods for cable inspection are being studied and applied to the field. One of the NDT methods, acoustic emission technique, is known as an effective technique to detect cable damage and breakage. In this study, to evaluate the applicability of acoustic emission technique to bridges, acoustic emission signals according to damage of the strand were acquired and analyzed by tensile test. Moreover, The optimal AE sensor type was selected for field application. As a result, it is considered that the acoustic emission technique will be able to detect corrosion breakage and signs of rupture.

Analysis of acoustic emission parameters according to failure of rock specimens (암석시편 파괴에 따른 acoustic emission 특성인자 분석)

  • Lee, Jong-Won;Oh, Tae-Min;Kim, Hyunwoo;Kim, Min-Jun;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.657-673
    • /
    • 2019
  • A monitoring method based on acoustic emission (AE) sensor has been widely used to evaluate the damage of structures in underground rock. The acoustic emission signal generated from cracking in material is analyzed as various acoustic emission parameters in time and frequency domain. To investigate from initial crack generation to final failure of rock material, it is important to understand the characteristics of acoustic emission parameters according to the stress ratio and rock strength. In this study, uniaxial compression tests were performed using very strong and weak rock specimen in order to investigate the acoustic emission parameters when the failure of specimen occurred. In the results of experimental tests, the event, root-mean-square (RMS) voltage, amplitude, and absolute energy of very strong rock specimen were larger than those of the weak rock specimen with an increase of stress ratio. In addition, the acoustic emission parameters related in frequency were more affected by specification (e.g., operation and resonant frequency) of sensors than the stress ratio or rock strength. It is expected that this study may be meaningful for evaluating the damage of underground rock when the health monitoring based on the acoustic emission technique will be performed.

Interpretation of AE Signals from Rocket Motor Case Assembly (로켓 연소관 조립체의 음향방출 신호해석)

  • Rhee, Sang-Ho;Hwang, Tae-Kyong;Mun, Sun-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.488-496
    • /
    • 2003
  • To establish nondestructive test method for rocket motor assembly with rubber and aerospace composite materials, practicable quality control acoustic emission test method is presented. Structural analysis for motor assembly is performed by ABAQUS code and analysis output result is confirmed by strain gage and AE data. Various specimens were tested and analyzed using strain gage and acoustic emission data. The hit rate of acoustic emission was closely related with case/rubber debonding. This report also describes practicable acoustic emission nondestructive method for evaluating motor case assembly quality assurance in the industrial field.

Acoustic Emission Application for Aerospace Composite Materials (항공용 복합재료에 대한 음향방출의 활용)

  • Lee, Sang-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.3
    • /
    • pp.313-318
    • /
    • 2001
  • To establish nondestructive test method for aerospace composite materials, various composite specimens were tested and analyzed using acoutic emission. The hit rate of acoustic emission closely was rotated with crack initiation and propagation. This report also presents defection capability of crack initiation pressure, initial crack active location, and crack propagation using acoustic emission.

  • PDF

The Relation between Treeing Breakdown Prediction and Acoustic Emission in Low Density Polyethylene (저밀도 폴리에틸렌의 트리 파괴 예지와 음향방출과의 관계)

  • 백관현;심종탁;김재환
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.2
    • /
    • pp.77-84
    • /
    • 1994
  • This paper is measured partial discharge of low density polyethylene by using acoustic emission measuring method when the electrical tree grow its length in LDPE. Acoustic emission's pulses and its amplitudes of partial discharge are measured by acoustic emission measuring devices. Theorem of skewness are used for breakdown prediction of LDPE. So, it is found that the breakdown of LDPE could be predicted by its skewness's value. There are two kind of specimen of no void and specimen of artificial void, this one's electrical tree grows very faster than that one's.

  • PDF

Acoustic Emission Characteristics of Notched Aluminum Plate Repaired with a Composite Patch (복합재 패치로 보수된 노치형 알루미늄 합금 평판의 음향방출 특성)

  • Yoon, Hyun-Sung;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.1
    • /
    • pp.53-61
    • /
    • 2011
  • Edge notched A16061-T6 aluminum was repaired with a GFRP composite patch as a function of the number of stacking, Damage progress of specimen for tension load has been monitored by acoustic emission(AE), AE energy rate, hit rate, amplitude, waveform and 1st peak frequency distribution were analyzed. Fracture processes were classified into Al cracking, Fiber breakage, Resin cracking and Delamination. Displacement of a specimen can be divided into Region I, II and ill according to acoustic emission characteristics. Region II where the patch itself was actually fractured was focused on to clarify the AE characteristics difference for the number of stacking.

A Pattern Recognition Method of Fatigue Crack Growth on Metal using Acoustic Emission (음향방출을 이용한 금속의 피로 균열성장 패턴인식 기법)

  • Lee, Soo-Ill;Lee, Jong-Seok;Min, Hwang-Ki;Park, Cheol-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.125-137
    • /
    • 2009
  • Acoustic emission-based techniques are being used for the nondestructive inspection of mechanical systems used in service. For reliable fault monitoring related to the crack growth, it is important to identify the dynamical characteristics as well as transient crack-related signals. Widely used methods which are based on physical phenomena of the three damage stages for detecting the crack growth have a problem that crack-related acoustic emission activities overlap in time, therefore it is insufficient to estimate the exact crack growth time. The proposed pattern recognition method uses the dynamical characteristics of acoustic emission as inputs for minimizing false alarms and miss alarms and performs the temporal clustering to estimate the crack growth time accurately. Experimental results show that the proposed method is effective for practical use because of its robustness to changes of acoustic emission caused by changes of pressure levels.

Experimental Evaluation Study on the Integrity of Plastic Shell Structure using Acoustic Emission Technique (음향방출기법을 응용한 플라스틱 쉘 구조물의 건전성 평가 연구)

  • Shul, Chang-Won;Lee, Kee-Bhum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.39-47
    • /
    • 2005
  • An acoustic emission technique is applied to the tensile tests of the plastic specimen under the different test speeds and the structural integrity evaluation of the plastic shell structure. Several AE characteristics are acquired from the tensile tests and they are proven to be useful parameters in evaluating its structural integrity. The results shows that tensile strength has almost constant value over some higher speed region while revealing some increasing tendency in strength as the test speeds up in lower speed region. The crack initiation loads and locations are accurately evaluated during the static compression testing of the plastic shell structures by using acoustic emission technique.

Acoustic Emission Monitoring Fine Wire Drawing Process (와이어 인발가공에 있어서 음향방출 발생 특성)

  • 이완규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.1
    • /
    • pp.43-50
    • /
    • 1996
  • From a manufacturing standpoint it would be desirable to monitor the degradation of drawing die, that is essential for the maintenance of die quality, the evaluation of product integrity and the reducing scrap. Acoustic emission is powerful method in monitoring fine wire drawing process, especially in detecting the die fracture at early stage. Experiments also suggested that acoustic emission sigals contained valuable information regarding the stage of a drawing process such as the surface appearance of products and the condition of lubrication. These informations are AE monitoring techniques a possible tool in monitoring the drawing process operation. In order to approach this, this paper discusses the nature of acoustic emission signal presented which illustrate the effects of wire and die material, lubricants, and drawing speed on the generation and the mean voltage level of acoustic emission signal. From these experimental, results, we understanded controlling factors of acoustic emission generation.

  • PDF