• Title/Summary/Keyword: Acoustic Doppler Current Profiler

Search Result 72, Processing Time 0.024 seconds

Analysis on Mixing Behavior using Tracer at River Confluence (남강합류부에서의 추적자를 이용한 혼합거동 분석)

  • Han, Eun Jin;Kim, Young Do;Lyu, Siwan;Kim, Dong Su;Cho, Kwang Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.46-46
    • /
    • 2018
  • 남강은 낙동강 유역의 중하류에 위치하고 있으며, 낙동강에 우안으로 합류되는 제 1지류이다. 낙동강 본류 하천의 지류하천이지만 국가하천이며, 비교적 큰 유량을 가지고 있다. 낙동강은 본류를 취수원을 이용하고 있어, 남강과 같이 지류 하천유입 이후의 낙동강 본류에 거동이 중요하다. 취수 원수는 정수처리과정에서도 우선적으로 고려해야 하는 인자이다. 따라서 남강이 합류되는 합류에서의 혼합거동은 중요하다. 혼합거동을 보고자 추적자 실험을 수행하였다. 추적자 실험은 공간적으로는 남강과 낙동강의 합류점 부근을 선택하였고, 시간적으로는 계절별, 보 운영 시기별로 실험하였다. 또한 합류부 주변에서의 유량측정과 자연추적자의 농도 측정으로 수행하였다. 낙동강과 남강은 대하천이므로 유량측정을 ADCP(Acoustic Doppler current profiler)을 활용하였으며, 추적자의 농도 추적은 센서를 통해 현장 측정하였다. 또한 영상분석을 하고자 드론도 활용하였다. 추적자 실험 분석을 유량과 추적자 농도 분산 정도를 분석하였다. 이를 활용하여 지류하천인 남강의 합류이후 낙동강 본류의 거동을 분석하였다. 분석한 결과를 바탕으로 남강의 유량시기별 혼합거동은 달라지는 것으로 나타났다. 또한 드론을 활용한 분석도 혼합거동에서 적용할 수 있을 것으로 판단된다. 추적자 실험을 통해 취수 원수의 특성을 분석할 수 있었다. 향후 유량 변화의 따른 남강합류후 낙동강의 혼합거동의 기초자료 자료 활용 될 것으로 판단된다. 또한 취수원수의 특성을 위한 유량별 다기능보 운영 시기별 혼합거동 분석을 위한 추가 실험이 필요할 것 판단된다.

  • PDF

Mean Velocity Distribution of Natural Stream using Entropy Concept in Jeju (엔트로피 개념을 이용한 제주도 상시하천의 평균유속분포 추정)

  • Yang, Se-Chang;Yang, Sung-Kee;Kim, Yong-Suk
    • Journal of Environmental Science International
    • /
    • v.28 no.6
    • /
    • pp.535-544
    • /
    • 2019
  • We computed parameters that affect velocity distribution by applying Chiu's two-dimensional velocity distribution equation based on the theory of entropy probability and acoustic doppler current profiler (ADCP) of Jungmun-stream, Akgeun-stream, and Yeonoe-stream among the nine streams in Jeju Province between July 2011 and June 2015. In addition, velocity and flow were calculated using a surface image velocimeter to evaluate the parameters estimated in the velocity observation section of the streams. The mean error rate of flow based on ADCP velocity data was 16.01% with flow calculated using the conventional depth-averaged velocity conversion factor (0.85), 6.02% with flow calculated using the surface velocity and mean velocity regression factor, and 4.58% with flow calculated using Chiu's two-dimensional velocity distribution equation. If surface velocity by a non-contact velocimeter is calculated as mean velocity, the error rate increases for large streams in the inland areas of Korea. Therefore, flow can be calculated precisely by utilizing the velocity distribution equation that accounts for stream flow characteristics and velocity distribution, instead of the conventional depth-averaged conversion factor (0.85).

Analysis ofriverflow using the ADCP postprocessing software (adcptools) (ADCP 후처리 소프트웨어(adcptools)를 이용한 하천 흐름 분석)

  • Lee, Chanjoo;Kim, Jong Pil;Park, Edward;Kastner, Karl
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.103-115
    • /
    • 2016
  • At present, an acoustic Doppler current profiler (ADCP) is one of the most suitable tools for measurement of three dimensional flow characteristics in the river. The data resulting from this approach can be used for flow visualization and velocity mapping together with post-processing software tools. Among them, 'adcptools' is the latest one and provides more realistic velocity distribution in the cross-section since it uses velocity along the beam direction. In this study, a flow analysis was made using the 'adcptools' for the Amazon River and the Han River dataset. Discharge was recalculated and accuracy of discharge and velocity was evaluated. Streamwise velocity distribution and secondary flow pattern in cross-sections were visualized. Geo-referenced velocity distribution was also mapped. A summary with future prospect of 'adcptools' for studies on fluvial geomorphology is briefly given.

Hydrography and Circulation in the Youngsan River Estuary in Summer, 2000 (2000년 여름 영산강 하구의 해수 특성과 순환)

  • Cho, Yang-Ki;Cho, Cheol;Sun, Youn-Jong;Park, Kyung-Yang;Park, Lae-Hwan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.218-224
    • /
    • 2001
  • Water movement in the Young San River Estuary where a sea dyke was constructed, was observed using anacoustic doppler profiler (ADP) and two TGPS buoys for 25 hours on 27-28 July 2000. Hydrographic observations were simultaneously taken using CTD to understand the characteristic of the spacial structure of temperature and salinity. A large quantity of fresh water was discharged from the sea dyke on 26 July 2000. The observation period fell on neap tide. The amplitude of the tidal elevation and the maximum velocity of the tidal current were about 4 m and 12 cm/sec respectively. The water movement at the surface layer is mainly controlled by wind, and those at the other layers are controlled by semidiurnal tide. The low salinity water less than 22 psu was observed along the northern part during the early observation period while southerly wind prevails. The less saline water moves westward and finally leaves the estuary by easterly wind early on the second day. We can divide the vertical structure into four layers by hydrography and current structure. Mean velocity structure shows that relatively less saline waters at the surface and the middle layer move seaward, and the waters at the upper and the bottom layers move landward. It is thought that the intermittent discharge of river water from the sea dyke makes vertical structure of four layers.

  • PDF

Distribution of Current Structures between Sori Island and Yokji Island in the South Sea of Korea (한국 남해 소리도와 욕지도 사이 해역의 유동 분포)

  • Hwang, Suk-Bum;Choo, Hyo-Sang;Kim, Dae-Hyun;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.285-291
    • /
    • 2006
  • In order to find the current structure between Sori Island and Yokji Island in the South Sea of Korea, water movements were measured in May, June, October and November of 2004 using ADCP(acoustic doppler current profiler). In the southwestern part of Yokji Island, northeastward flow in whole of depth was dominant by mean current The boundary layer between the upper layer and lower layer was formed between 15m and 20m and each layer different flow. The upper and lower layers have a different direction and speed of currents. In the calculated volume transport, the northeastward transport was greater than southwestward.

  • PDF

Distribution and Transport of Suspended Particulate Matter, Dissolved Oxygen and Major Inorganic Nutrients in the Cheju Strait

  • Suk, Moon-Sik;Hong, Gi-Hoon;Chung, Chang-Soo;Chang, Kyung-Il;Kang, Dong-Jin
    • Journal of the korean society of oceanography
    • /
    • v.31 no.2
    • /
    • pp.55-63
    • /
    • 1996
  • Distribution of suspended particulate matter, dissolved oxygen and major inorganic nutrients along a meridional section ($126^{\circ}$ 33' E) in the Cheju Strait is described along with the hydrographic and current data obtained during April 25-27, 1995. The current measurements was conducted using a vessel-mounted Acoustic Doppler Current Profiler (ADCP). Repeated coverage along an ADCP transect during 25 hours allows to calculate the daily mean along- and cross-strait currents. Measured material concentrations and the mean current speed were used to estimate the flux density (cencentration times current speed) of materials. Two types of depth distibution of flux densities were observed. for nitrate and suspended particulate matter, the depth distribution pattern of materials determines those of flux densities. However, flow patterns determine those of flux densities for dissolved oxygen, phosphate and silicic acid. The total along-strait water volume transport is about 0.3 Sv (1Sv $10^{6}$ $m^{3}/s^{-1}$). The total along-strait material transports are estimated to be 3.1 $${\times} $10^{5}$ $g/s^{-1},$ 2.4 ${\times}$ $10^{6}\;g/s^{-1},$ 7.I ${\times}$ $10^{2}\;mol/s^{-1},$ 3.I ${\times}$ $10\;mol/s^{-1},$ 1.7 ${\times}$ $10^{3}\;mol/s^{-1}$ for suspended particulate matter, dissolved oxygen, nitrate ion, silicic acid and phosphate ion, respectively.

  • PDF

Estimation of Significant Wave Heights from X-Band Radar Using Artificial Neural Network (인공신경망을 이용한 X-Band 레이다 유의파고 추정)

  • Park, Jaeseong;Ahn, Kyungmo;Oh, Chanyeong;Chang, Yeon S.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.561-568
    • /
    • 2020
  • Wave measurements using X-band radar have many advantages compared to other wave gauges including wave-rider buoy, P-u-v gauge and Acoustic Doppler Current Profiler (ADCP), etc.. For example, radar system has no risk of loss/damage in bad weather conditions, low maintenance cost, and provides spatial distribution of waves from deep to shallow water. This paper presents new methods for estimating significant wave heights of X-band marine radar images using Artificial Neural Network (ANN). We compared the time series of estimated significant wave heights (Hs) using various estimation methods, such as signal-to-noise ratio (${\sqrt{SNR}}$), both and ${\sqrt{SNR}}$ the peak period (TP), and ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k). The estimated significant wave heights of the X-band images were compared with wave measurement using ADCP(AWC: Acoustic Wave and Current Profiler) at Hujeong Beach, Uljin, Korea. Estimation of Hs using ANN with 3 parameters (${\sqrt{SNR}}$, TP, and Rval > k) yields best result.

Uncertainty analysis for Section-by-Section method of ADCP discharge measurement based on GUM standard (GUM 표준안 기반 ADCP 지점 측정 방법 유량 측정 불확도 분석)

  • Kim, Dongsu;Kim, Jongmin;Byeon, Hyunhyuk;Kang, Junkoo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.8
    • /
    • pp.521-535
    • /
    • 2017
  • Acoustic Doppler Current Profilers (ADCPs) have been widely utilized for assessing streamflow discharge, yet few comprehensive studies were conducted to evaluate discharge uncertainty in consideration of individual uncertainty components. It could be mostly because it was not easy to determine which uncertainty framework can be appropriate to rigorously analyze streamflow discharge driven by ADCPs. In this regard, considerable efforts have been made by scientific and engineering societies to develop a standardized theoretical framework for uncertainty analysis in hydrometry. One of the well-established UA methodology based on sound statistical and engineering concepts is Guide to the Expression of Uncertainty Measurement (GUM) adopted widely by various scientific and research communities. This research fundamentally adapted the GUM framework to assess individual uncertainty components of ADCP discharge measurements, and subsequently provided results of a customized experiment in a controllable real-scale artificial river channel. We focused particularly upon sensitivities of uncertainty components in the GUM framework driven by ADCPs direct measurements such as depths, edge distance, submerged depth, velocity gap, sampling time, repeatability, bed roughness and so on. Section-by-Section method for ADCP discharge measurement was applied for uncertainty analysis for this study. All of measurements were carefully compared with data using other instrumentations such as ADV to evaluate individual uncertainty components.

Accuracy Analysis of Velocity and Water Depth Measurement in the Straight Channel using ADCP (ADCP를 이용한 직선 하천의 유속 및 수심 측정 정확도 분석)

  • Kim, Jongmin;Kim, Dongsu;Son, Geunsoo;Kim, Seojun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.367-377
    • /
    • 2015
  • ADCPs have been highlighted so far for measuring steramflow discharge in terms of their high-order of accuracy, relatively low cost and less field operators driven by their easy in-situ operation. While ADCPs become increasingly dominant in hydrometric area, their actual measurement accuracy for velocity and bathymetry measurement has not been sufficiently validated due to the lack of reliable bench-mark data, and subsequently there are still many uncertain aspects for using ADCPs in the field. This research aimed at analyzing inter-comparison results between ADCP measurements with respect to the detailed ADV measurement in a specified field environment. Overall, 184 ADV points were collected for densely designed grids for the given cross-section that has 6 m of width, 1 m of depth, and 0.7 m/s of averaged mean flow velocity. Concurrently, ADCP fixed-points measurements were conducted for each 0.2m and 0.02m of horizontal and vertical spacing respectively. The inter-comparison results indicated that ADCP matched ADV velocity very accurately for 0.4~0.8 of relative depth (y/h), but noticeable deviation occurred between them in near surface and bottom region. For evaluating the capacity of measuring bathymetry of ADCPs, bottom tracking bathymetry based on oblique beams showed better performance than vertical beam approach, and similar results were shown for fixed and moving-boat method as well. Error analysis for velocity and bathymetry measurements of ADCP can be potentially able to be utilized for the more detailed uncertainty analysis of the ADCP discharge measurement.

Analysis and Comparison of Flow Rate Measurements Using Various Discharge Measuring Instrument and ADCP (다양한 유량 측정기기와 ADCP를 이용한 유량 비교 분석)

  • Ji, Ju-Yeon;Park, Seung-Yong;Lee, Gwang-Woo;Park, Gyeong-Min;Hwang, Soon-Hong;Kim, Dong-Ho;Lee, Young-Joon
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.251-257
    • /
    • 2013
  • Discharge data examine the process of hydrologic cycle and used significantly in water resource planning and irrigation and flood control planning. It makes high quality discharge data, they carry out research on standard and method of discharge measurement, and equipment improvement. Now various flow meters are utilized to make discharge data in Korea. However, accuracy of equipment and exprerimental research data from measurement are not enough. ADCP(Acoustic Doppler Current Profiler) have been introduced and utilized for flow measurements since the end of 1980's. ADCP flow method is a formal method for flow measurement can easily applyd to relatively large rivers gradually recognized. This equipment can measure the non-contact three-dimensional velocity and water depth data very quickly and efficiently. Also, spatial and temporal resolution of the data is more accurate than any other flow measurement methods which measure flow rate by velocity - area measurement method. In this paper, the velocity is measured using various flow meter and verified the effectiveness by applying from the ADCP in Geum-river. Various flow meters which are med for discharge measurements are VALEPORT002, FLOW TRACKER, PRICE AA and ADCP. The average of five times flow measurement result by ADCP was $10.412m^3/s$, with a standard deviation of 0.68. The repeat test by ADCP and comparison between ADCP and other flow devices to verify the most import factor, flow measurement accuracy. In the result, repeat test of the ADCP showed similar values, flow values were similar to other velocity device results and the average error is 7.7%.