DOI QR코드

DOI QR Code

Accuracy Analysis of Velocity and Water Depth Measurement in the Straight Channel using ADCP

ADCP를 이용한 직선 하천의 유속 및 수심 측정 정확도 분석

  • Kim, Jongmin (Dept. of Civil & Environmental Eng, Dankook University) ;
  • Kim, Dongsu (Dept. of Civil & Environmental Eng, Dankook University) ;
  • Son, Geunsoo (Dept. of Civil & Environmental Eng, Dankook University) ;
  • Kim, Seojun (Dept. of Civil & Environmental Eng, Dankook University)
  • 김종민 (단국대학교 토목환경공학과) ;
  • 김동수 (단국대학교 토목환경공학과) ;
  • 손근수 (단국대학교 토목환경공학과) ;
  • 김서준 (단국대학교 토목환경공학과)
  • Received : 2015.03.12
  • Accepted : 2015.03.31
  • Published : 2015.05.31

Abstract

ADCPs have been highlighted so far for measuring steramflow discharge in terms of their high-order of accuracy, relatively low cost and less field operators driven by their easy in-situ operation. While ADCPs become increasingly dominant in hydrometric area, their actual measurement accuracy for velocity and bathymetry measurement has not been sufficiently validated due to the lack of reliable bench-mark data, and subsequently there are still many uncertain aspects for using ADCPs in the field. This research aimed at analyzing inter-comparison results between ADCP measurements with respect to the detailed ADV measurement in a specified field environment. Overall, 184 ADV points were collected for densely designed grids for the given cross-section that has 6 m of width, 1 m of depth, and 0.7 m/s of averaged mean flow velocity. Concurrently, ADCP fixed-points measurements were conducted for each 0.2m and 0.02m of horizontal and vertical spacing respectively. The inter-comparison results indicated that ADCP matched ADV velocity very accurately for 0.4~0.8 of relative depth (y/h), but noticeable deviation occurred between them in near surface and bottom region. For evaluating the capacity of measuring bathymetry of ADCPs, bottom tracking bathymetry based on oblique beams showed better performance than vertical beam approach, and similar results were shown for fixed and moving-boat method as well. Error analysis for velocity and bathymetry measurements of ADCP can be potentially able to be utilized for the more detailed uncertainty analysis of the ADCP discharge measurement.

최근 수문관측의 측정 인력과 비용의 절감과 측정 정확도를 높이기 위해 초음파를 이용한 ADCP 유량 측정 방법의 적용이 활발하게 이루어지고 있으며 점점 그 비중이 높아지고 있다. 하지만 ADCP의 유속 및 수심 측정 정확도에 대한 자료가 부족하여 ADCP 측정 결과에 대한 신뢰도를 확신하기 어렵다. 이에 본 연구에서는 직선하천에서 체계적이고 정밀한 측정을 통해 ADCP의 유속 및 수심 정확도를 분석하였다. ADCP의 유속 측정 정확도를 분석하기 위해 횡단면에 184개의 측점에서 측정한 ADV 유속 측정 결과와 ADCP의 유속 측정 결과를 비교하여 오차를 계산하였다. 그 결과 바닥을 기준으로 수심비(y/h)가 0.4~0.8 범위에서는 ADCP가 정확하게 유속을 측정하는 것으로 나타났으나, 수면 근처에서는 유속을 작게 측정하였고, 하상 근처에서는 유속을 크게 측정하여 정확도가 떨어지는 것을 확인하였다. 또한 ADCP의 수심 정확도를 분석한 결과 하상추적(bottom tracking) 방식이 약 6%의 오차를 보였고, 연직 빔(vertical beam) 방식이 약 9%의 오차를 보여 식생이 활착한 자연하천의 경우 하상추적 방식이 좀 더 정확하게 수심을 측정하는 것으로 확인하였다. 그리고 고정 측정 방법과 이동 측정 방법의 차이를 검토한 결과 두 방법 모두 유사한 정확도를 나타냈다. 이와 같은 연구 결과는 향후 ADCP의 측정 불확도 평가를 위한 기초 자료로 활용한다면 ADCP를 하천에 적용함에 있어 좀 더 정확한 유속 및 수심 측정이 가능할 것으로 기대된다.

Keywords

References

  1. Carr, M.L., and Rehmann, C.R. (2005). "Estimating the dispersion coefficient with an acoustic Doppler current profiler." Proceeding, World Water and Environmental Resources Congress 2005 (CD-ROM), ASCE, Reston, VA.
  2. Dinehart, R.L., and Burau, J.R. (2005). "Averaged indicators of secondary flow in repeated acoustic Doppler current profiler crossings of bends."Water Resources Research, Vol. 41, W09405, doi:10.1029/2005WR004050.
  3. Gaeuman, D., and Jacobson, R.B. (2005). "Aquatic habitat mapping with an acoustic current profiler: Considerations for data quality." Open-file Report 2005-1163, U.S. Geological Survey, Reston, VA.
  4. Gonzalez-Castro, J., and Muste, M. (2007). "Framework for estimating uncertainty of ADCP measurements from a moving boat by standardized uncertainty analysis." Journal of Hydraulic Engineering, Vol. 133, No. 12, pp. 1390-1410. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1390)
  5. Howarth, M.J. (2002). "Estimates of Reynolds and bottom stress from fast sample ADCPs deployed in continental shelf seas." Proceeding, Hydraulic Measurements and Experimental Methods 2002 (CD-ROM), ASCE, Reston, VA.
  6. ISO 1088 (2007). "Hydrometry-Velocity-area Methods Using Current-Meters-Collection and Processing of Data for Determination of Uncertainties in Flow Measurement. International Organization for Standardization.", ISO 1088, Geneva, Switzerland.
  7. Kim, E.S., and Choi, H.I. (2009). "Verification and application of velocity measurement using price meter and ADCP." Korean society of hazard mitigation, Vol. 9, No. 3, pp. 101-106.
  8. Kim, D.S., Muste, M., and Weber, L. (2007). "Software for assessment of longitudinal dispersion coefficient using acoustic-Doppler current profiler measurements." XXXII International Association of Hydraulic Engineering and Research Congress, Venice, Italy.
  9. Kim, D.S., and Kang, B.S. (2011). "Validation of assessment for mean flow field using spatial averaging of instantaneous ADCP velocity measurements." Journal of Environmental Science International, Vol. 20, No. 1, pp. 107-118. https://doi.org/10.5322/JES.2011.20.1.107
  10. Kostaschuk, R., Villard, P., and Best, J. (2004). "Measuring velocity and shear stress over dunes with acoustic doppler profiler." Journal of Hydraulic Engineering, Vol. 130, No. 9, pp. 932-936. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:9(932)
  11. Lee, K.T., Ho, H.C., Muste, M., and Wu, C.H. (2014). "Uncertainty in open channel discharge measurements acquired with streampro ADCP." Journal of Hydrology, Vol. 509, pp. 101-114. https://doi.org/10.1016/j.jhydrol.2013.11.031
  12. Lu, Y., and Lueck, R.G. (1999). "Using broadband ADCP in a tidal channel. Part II: Turbulence." Journal of Atmospheric and Oceanic Technology, Vol. 16, pp. 1568-1579. https://doi.org/10.1175/1520-0426(1999)016<1568:UABAIA>2.0.CO;2
  13. Morlock, S.E. (1996). Evaluation of acoustic Doppler current profiler measurements of river discharge, US Geological Survey Water Resources Investigations, Report 95-4218.
  14. Muste, M., Yu, K., and Spaspjevic, M. (2004). "Practical aspects ADCP data use for quantification of mean river flow characteristics; part I : moving-vessel measurement." Flowmeasurement and instrumentation, Vol. 15, No. 1, pp. 1-6.
  15. Muste, M., Vermeyen, T., Hotchkiss, R., and Oberg, K. (2007). "Acoustic velocimetry for riverine environments." Journal of Hydraulic Engineering, Vol. 115, No. 12, pp. 1297-1298.
  16. Muste, M., Kim, D.S., and Gonzalez-Castro, J.A. (2010). "Near-Transducer Errors in ADCP Measurements: Experimental Findings." Journal of Hydraulic Engineering, Vol. 136, No. 5, pp. 275-289. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000173
  17. Nystrom, E.A., Oberg, K.A., and Rehmann, C.R. (2002). "Measurement of turbulence with acoustic Doppler current profilers sources of error and laboratory results." Proceeding, Hydraulic Measurements & Experimental Methods 2002(CD-ROM), ASCE, Reston, VA.
  18. RDI (1996). "Acoustic Doppler Current Profilers-rinciple of operation." A Practical Primer. San Diego, CA, RD Instruments.
  19. Rennie, C.D., Millar, R.G., and Church, M.A. (2002). "Measurement of bedload velocity using an acoustic Doppler current profiler." Journal of Hydraulic Engineering, Vol. 128, No.5, pp. 473-483. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(473)
  20. Schemper, T.J., and Admiraal, D.M. (2002). "An examination of the application of acoustic Doppler current profiler measurements in a wide channel of uniform depth for turbulence calculations." Proceeding, Hydraulic Measurements & Experimental Methods 2002 (CDROM), ASCE, Reston, VA.
  21. Shields, F.D., Knight, S.S., and Church, M.A. (2003). "Use of acoustic Doppler current profilers to describe velocity distributions at the reach scale." Journal of the Atmosphere and Water Resources Association, Vol. 39, No. 6, pp. 1397-1408. https://doi.org/10.1111/j.1752-1688.2003.tb04426.x
  22. Simpson, M.R. (2001). Discharge measurements using a broad-band acoustic Doppler current profiler, US Geological Survey Open-File Report 01-1.
  23. SonTek (2000). "Doppler Velocity Log for ROV/AUV Applications." SonTek Newsletter, 6(1), SonTek, San Diego, CA.
  24. Stacey, M.T., Monismith, S.G., and Burau, J.R. (1999) "Observations of turbulence in partially stratified estuary." Journal of Physical Oceanography, Vol. 29, pp. 1950-1970. https://doi.org/10.1175/1520-0485(1999)029<1950:OOTIAP>2.0.CO;2

Cited by

  1. Estimation of Suspended Sediment Concentration in Small Stream with Acoustic Backscatter from Horizontal ADCP based on Real-Scale Field Experiment vol.36, pp.6, 2016, https://doi.org/10.12652/Ksce.2016.36.6.1023