• Title/Summary/Keyword: Acoustic Design

Search Result 982, Processing Time 0.04 seconds

A New Design of the Interrogating Waves for Medical Ultrasonic Imaging Based on Wavelets and Subband Filter Banks: A Simulation Study (의료용 초음파 영상시스템을 위한 Wavelet 과 Subband Filter Bank 에 기반한 새로운 탐침 파형의 설계: A Simulation Study)

  • Yang Yoon Seok
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.431-438
    • /
    • 2004
  • Medical ultrasonic imaging is a useful imaging facility known to be most safe and easy. It enables physicians to observe the inside structures of the bodies, blood flow, and motions of internal organs. Some physical properties of biologic tissues can also be estimated from backscattered sounds. However, the ultrasonic pulses interrogating the living organisms leave their footprints in the returning signals during imaging. Some significant details are buried in the footprints and their overlaps from adjacent particles. These distortions also decrease the quality of the images. Many research efforts have been made to enhance the image quality and to recover the acoustic information in various ways. In this study, a new interrogation method based on the wavelet and subband filter bank is proposed. It adopts the subband wavelet filters satisfying the perfect-reconstruction (PR) conditions as the interrogating pulses to restore the details useful in tissue characterization and to enhance the image quality. The proposed method was applied to two types of simulations of ultrasonic imaging. The results showed its ability to restore the detailsin the simulated interrogation of biologic tissues, and verified the improved image quality in the simulated imaging of general ultrasonic phantom compared with the conventional method.

Development of an EMAT System for Detecting flaws in Pipeline (배관결함 검출을 위한 EMAT 시스템 개발)

  • Ahn, Bong-Young;Kim, Young-Joo;Kim, Young-Gil;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • It is possible to detect flaws in pipelines without interruption using all EMAT transducer because it is a non-contact transducer which can transmit ultrasonic waves into specimens without couplant. And it ran easily generate guided waves desired in each specific problem by altering the design of coil and magnet. In the present work, EMAT systems have been fabricated to generate surface waves, and selectively the plate wave of $A_1\;or\;S_1$ mode. The surface wave of 1.5MHz showed a good signal-to-noise ratio without distortion in its propagation along a pipeline, while the $S_1$ mode of 800kHz and the $A_1$ mode of 940kHz were distorted according to their dispersive properties. The wider the excitation pulse becomes, the better the mode selectivity of the plate waves becomes. A pipe of 256mm inner diameter and 5.5m thickness with 5 flaws was used for comparing the flaw detectability among the modes under consideration.

Comparative Analysis on the Sound Characteristics of Riffles and Pools (여울과 소의 소리특성 비교 분석)

  • Kang, Su-Jin;Kang, Joon-Gu;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.878-886
    • /
    • 2018
  • This study quantified the sounds of riffles and pools in natural rivers and conducted a comparative analysis of the frequency and sound pressure per flow velocity. The surveyed area was Namdaecheon basin in Yangyang-gun, Gangwon-do and the sounds of a total of 23 sites were analyzed. A hydro microphone was used to measure the sound and analyze the data using an acoustic analysis program. The location was also selected at places with minimal ambient noise and the measurement points were the depth of riffles and pools. The results revealed an average difference of 0.515 m/s for flow velocity at 8 riffles and 15 pools. The difference in sound pressure occurred due to the flow velocity. In the case of sound pressure, it was measured at an average of 176.8 dB for riffles and 168.2 dB for pools, demonstrating a difference of approximately 8.6 dB. Furthermore, in the case of maximum sound pressure, riffles showed a constant range between 200 Hz and 250 Hz, while the pools exhibited maximum sound pressure at various frequencies from 200 Hz to 1,000 Hz. This revealed the ecological stream reproduction, development of preferred sound sources for aquatic life, and design of structures.

Active control of pump noise of dishwashers using FxLMS algorithm (FxLMS 알고리듬 기법을 이용한 식기 세척기의 펌프 소음 능동 제어)

  • Tark, Un-su;Oh, Han-Eum;Hong, Chinsuk;Jeong, Weui-Bong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.46-54
    • /
    • 2021
  • In this paper, active noise control was performed to reduce radiated noise in the low frequency band of dishwashers. First, through an analysis of the noise environment of the dishwasher, it was confirmed that the pump noise contributed the most to the radiated noise in the low frequency band, From the result of the noise environment analysis, the reference signal was selected to be the vibration signal of the pump body. The reference signal was obtained by using the accelerometer on the pump body, which can prevent acoustic feedback. The error signal sensor was selected as a microphone located at 1 m in front of the dishwasher and 0.5 m in height. And to design the controller, the error signal and the reference signal were measured at the operational rpms of the dishwasher at 2,500 rpm, 2,600 rpm and 2,800 rpm, and the secondary path transfer function was measured. The designed controller was mounted on Digital Signal Processor (DSP) equipment, and the control performance was verified experimentally. As a result of the measurement at the 3 operational rpms, the 7th multiple component of pump operating frequency decreased by 1.93 dB, 4.43 dB, 5.15 dB per rpm, and the 12th multiple component decreased by 6.67 dB, 2.34 dB, 4.28 dB per rpm. And overall Sound Pressure Level (SPL) decreased by 0.84 dB, 2.58 dB, 1.48 dB by rpm.

The Future of NVH Research - A Challenge by New Powertrains

  • Genuit, Ing. K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.48-48
    • /
    • 2010
  • Sound quality and NVH-issues(Noise, Vibration and Harshness) of vehicles has become very important for car manufacturers. It is interpreted as among the most relevant factors regarding perceived product quality, and is important in gaining market advantage. The general sound quality of vehicles was gradually improved over the years. However, today the development cycles in the automotive industry are constantly reduced to meet the customers' demands and to react quickly to market needs. In addition, new drive and fuel concepts, tightened ecological specifications, increase of vehicle classes and increasing diversification(increasing market for niche vehicles), etc. challenge the acoustic engineers trying to develop a pleasant, adequate, harmonious passenger cabin sound. Another aspect concerns the general pressure for reducing emission and fuel consumption, which lead to vehicle weight reductions through material changes also resulting in new noise and vibration conflicts. Furthermore, in the context of alternative powertrains and engine concepts, the new objective is to detect and implement the vehicle sound, tailored to suit the auditory expectations and needs of the target group. New questions must be answered: What are appropriate sounds for hybrid or electric vehicles? How are new vehicle sounds perceived and judged? How can customer-oriented, client-specific target sounds be determined? Which sounds are needed to fulfil the driving task, and so on? Thus, advanced methods and tools are necessary which cope with the increasing complexity of NVH-problems and conflicts and at the same time which cope with the growing expectations regarding the acoustical comfort. Moreover, it is exceedingly important to have already detailed and reliable information about NVH-issues in early design phases to guarantee high quality standards. This requires the use of sophisticated simulation techniques, which allow for the virtual construction and testing of subsystems and/or the whole car in early development stages. The virtual, testing is very important especially with respect to alternative drive concepts(hybrid cars, electric cars, hydrogen fuel cell cars), where complete new NVH-problems and challenges occur which have to be adequately managed right from the beginning. In this context, it is important to mention that the challenge is that all noise contributions from different sources lead to a harmonious, well-balanced overall sound. The optimization of single sources alone does not automatically result in an ideal overall vehicle sound. The paper highlights modern and innovative NVH measurement technologies as well as presents solutions of recent NVH tasks and challenges. Furthermore, future prospects and developments in the field of automotive acoustics are considered and discussed.

  • PDF

Optically transparent ultrasound transducers for combined ultrasound and photoacoustic imaging: A review (초음파-광음향 융합 영상을 위한 투명 초음파 변환기)

  • Shunghun Park;Jin Ho Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.441-451
    • /
    • 2023
  • Ultrasound transducers are an essential component of combined photoacoustic and ultrasound imaging systems and play an important role in image evaluation. However, ultrasound transducers are opaque; therefore, light must bypass the ultrasound transducer to reach the target point to produce a photoacoustic image. Providing different paths for the optical and acoustic signals results in a complicated system design, increasing the system volume. To overcome these problems, an optically Transparent Ultrasound Transducer (TUT) was developed. Unlike conventional opaque ultrasound transducers, optically TUT can be fabricated by a variety of manufacturing methods and they are suitable for use with specific piezoelectric elements and serve various purposes. In this study, a comparative analysis of the results of using Lithium Niobate (LNO), Lead Magnesium Niobate-Lead Titanate (PMN-PT), and Polyvinylidene Difluoride (PVDF), which are materials used in piezoelectric element-based TUT. LNO is a piezoelectric element widely used in TUT, and PMN-PT has been actively studied recently with a higher transmission and reception rate than LNO. Existing TUT have lower ultrasound resolution than photoacoustic resolution, but they have recently been manufacturing focused TUT with high ultrasound resolution using PVDF. A comparative analysis of the production results of these TUT was performed.

Development and Application of Penetration Type Field Shear Wave Apparatus (관입형 현장 전단파 측정장치의 개발 및 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Kim, Hyung-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.67-76
    • /
    • 2006
  • The reasonable assessment of the shear stiffness of a dredged soft ground and soft clay is difficult due to the soil disturbance. This study addresses the development and application of a new in-situ shear wave measuring apparatus (field velocity probe: FVP), which overcomes several of the limitations of conventional methods. Design concerns of this new apparatus include the disturbance of soils, cross-talking between transducers, electromagnetic coupling between cables, self acoustic insulation, the constant travel distance of S-wave, the rotation of the transducer, directly transmitted wave through a frame from transducer to transducer, and protection of the transducer and the cable. These concerns are effectively eliminated by continuous improvements through performing field and laboratory tests. The shear wave velocity of the FVP is simply calculated, without any inversion process, by using the travel distance and the first arrival time. The developed FVP Is tested in soil up to 30m in depth. The experimental results show that the FVP can produce every detailed shear wave velocity profiles in sand and clay layers. In addition, the shear wave velocity at the tested site correlates well with the cone tip resistance. This study suggests that the FVP may be an effective technique for measuring the shear wave velocity in the field to assess dynamic soil properties in soft ground.

Investigating the Relationship Between Vehicle Front Images and Voice Assistants (자동차 전면부와 음성 어시스턴트의 스타일 관계 분석)

  • Min-Jung Park;So-Yeong Min;Tae-Su Kim;Hyeon-Jeong Suk
    • Science of Emotion and Sensibility
    • /
    • v.25 no.4
    • /
    • pp.129-138
    • /
    • 2022
  • In the context of the increasing applications of voice assistants in vehicles, we focused on the association between the visual appeal of the cars and the acoustic characteristics of the voice assistants. This study aimed to investigate the relationship between the visual appeal of the vehicle and the voice assistant based on their emotional characteristics. A total of 15 adjectives were used to assess the emotional characteristics of 12 types of cars and six types of voices. An online interview was carried out, instructing participants to match three adjectives with the presented car images or voices. This was followed with a brief interview to allow the participants to reflect on the adjective matches. Based on the assessments, we performed principal component analysis (PCA) to determine factors. We aimed to deploy the cars and voices and analyze the patterns of clustering. The PCA analysis revealed two factors profiled as "Light-Heavy" and "Comfortable-Radical." Both car and voice stimuli were deployed in a two-dimensional space showing the internal relationship within and between the two substances. Based on the coordination data, a hierarchical cluster grouped the 18 stimuli into four groups labeled as challenge, elegance, majesty, and vigor. This study identified two latent factors describing the emotional characteristics of both car images and voice types clustered into four groups based on their emotional characteristics. The coherent matches between car style and voice type are expected to address the design concept more successfully.

Selection of Scale Model Materials for Acoustical Evaluation of 1:50 Multipurpose Halls (1:50 다목적홀의 음향평가를 위한 축소모형재료의 선정)

  • Jeon, Jin-Yong;Kim, Jeong-Jun;Kim, Yong-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.781-789
    • /
    • 2009
  • The absorption coefficients of the materials used in a 1:50 scale model multipurpose hall were measured based on ISO 354 and related laws. The shape and materials for the scale model were evaluated based on reflective surfaces, variable acoustic elements and sound-absorbing quality (125Hz-1kHz average) of seats. The measured average absorption coefficients of audience seats, audience and orchestra were 0.64, 0.74 and 0,45, respectively, which were simulated with the combination of wood, absorption materials and foam board. Various mounting methods for absorption curtain and banner were considered according to the installation methods. The average absorption coefficient was measured as 0.42, 0.47 and 0.45 in the conditions of Type A mounting, E mounting with 0.9 m backing air cavity, and Type G mounting which is suspended at the ceiling, respectively. It was confirmed that the absorption coefficient was increased at low frequency by backing air gap. The finishing material of stage house was an absorption material covered with thin fabric, which aimed average absorption coefficient of 0.68 by using fiber glass board. Each part of the real materials was compared with those of 1:50 scale model and it was found that the absorption characteristics of both cases were similar.

Research on the Soundscape for Excavation, Preservation and Promotion of Soundscape Resources in Hongdo Island (홍도의 소리경관 자원의 발굴, 보존 및 육성을 위한 사운드스케이프 조사연구)

  • Han, Myung-Ho;Oh, Yang-Ki;Roh, Tae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.343-355
    • /
    • 2009
  • In order to restore the identity of sound environment and expand the sound culture of a region, the purpose of this study are to excavate the resources of soundscape and find out the plans for the preservation and promotion of soundscape resources peculiar to the region. For this purpose, this research is conducted through an interview survey of residents and an observation survey using listening walk in Hongdo, one of the southwesten island of Korea. The results of survey confirm that there are so many sounds to hear around Hongdo island, those are, natural sounds such as the song of the birds, the roar of the waves, the whistling sounds, the shriek of the seagulls, and the pebbles sounds washed away by the waves, and artificial sounds such as the steam-whistle signals, the ship's broadcasts, the voice of tourists, the sounds of church bells, lighthouse sirens etc. The results suggest that it is necessary to consider several ways for restoration of an unique soundscape in Hongdo island, those are, improvement for efficient management of a ship's broadcasts in public areas, removal of a ferry in Hongdo swimming beach, management of Dangsanje (a religious service), preservation of a lighthouse siren and a foghorn, restoration and improvement of underground stream, management and control of public fish market, restoration of brooklet, management of cooperative system for a fish market, restoration of PoongO-Gut (a ritual for a large harvest) and a skate festival, management of a Hongdo sports meeting, sound quality modification of a boat whistle, restoration of orientalia such as a funeral bier, ecosystem preservation activity of the shore and ocean, and promotion of amenity for fascination and vitality in a rural community. Also, a sound map is drawn up for many tourists so as to realize the importance of sound environment and identity of soundscape and to gain their experience at first hand in Hongdo island.