• Title/Summary/Keyword: Acoustic Coupling

Search Result 211, Processing Time 0.037 seconds

An Experimental Study on The Coupling Path and Acoustic Modal Characteristics of a Coupled System of Passenger Compartment and Trunk (차실-트렁크 연성계의 연성경로 및 음향모드 특성에 관한 실험적 연구)

  • Lee, Jin-U;Kim, Gyu-Beom;Lee, Jang-Mu;Kim, Seok-Hyeon;Park, Dong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1302-1307
    • /
    • 2001
  • This study identifies the major coupling path by examining the variation of the coupled acoustic modal frequencies and modes. A 1/2-size acryl compartment model is designed and manufactured for the measurement and analysis of coupled acoustic modes. Due to acoustic coupling, a new acoustic mode appears in a low frequency range. This coupling affects only longitudinal acoustic modes of compartment. Experimental result shows that the package tray holes contribute to the coupling much more than the back seat and hole size is an important design factor to control low frequency acoustic modes in the coupled system.

Numerical Study of Acoustic Coupling between Combustion Chamber and Resonators in Liquid Rocket Engine (로켓엔진 연소기와 공명기간의 선형 음향 coupling에 관한 수치적 연구)

  • Park I-Sun;Sohn Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.407-410
    • /
    • 2005
  • Acoustic coupling between combustion chamber and gas-liquid scheme injectors are studied numerically in liquid rocket engine adopting linear acoustic analysis. The injectors can play a role as half-wave resonators. The combustion chamber with numerous injectors shows peculiar acoustic coupling with the injectors. As the injector length approaches a half wavelength or the original tuning length, new injector-coupled acoustic modes show up in the chamber and thereby, the acoustic-damping effect of the tuned injectors is appreciably degraded.

  • PDF

A Mathematical Formulation of the Structural-acoustic System with an Opening and a Flexible Structure (입구와 유연한 구조물로 구성된 경계를 가지는 구조-음향 연성계의 수학적 표현)

  • Seo, Hee-Seon;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.527-535
    • /
    • 2005
  • This paper explains a general coupling system in terms of the system parameters. impedance of a cavity or mobility of a structure. To easily access the mechanism of the structural-acoustic coupled system, a simple expression is derived. A general coupled equation is also derived of a general coupled problem constituted a flexible structure and an opening boundary in terms of vector and matrix notation, and is analyzed the coupling phenomena using the understanding acquired simple coupled system. The paper shows that the general coupled equation is expanded version of the simple coupled equation by some limiting checks. The paper also shows that the degree of coupling is proportioned to a stiffness of the acoustic system and a modal coupling coefficient, but is in inverse proportion to a mass of the structural system and the difference of the excitation frequency and resonant frequency of the acoustic or structural system.

Multi-Region Structural-Acoustic Coupling Analysis on Noise Reduction of Layered Structures using Finite Element and Boundary Element Technique (경계요소법과 유한요소법에 의한 흡음판의 소음저감에 관한 다영역 연성해석)

  • Ju, Hyun-Don;Seo, Won-Jin;Lee, Shi-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.309-313
    • /
    • 2000
  • A structural-acoustic coupling problem involving fluid in a cavity divided with flexible walls and porous materials is investigated in this paper. In many practical problems, the use of finite elements to discretize the fluid region leads to large stiffness and mass matrices. But, since the acoustic boundary element discretization requires to put elements only on the surface of structure, the size of matrices is reduced considerably. Here, we developed a numerical analysis program for the structural-acoustic coupling problems of the multi-region cavity, using boundary elements for the fluid regions and finite elements for the structure. By considering sound transmission through layered systems placed in a cavity, the accuracy of the coupled acoustical-structural finite element model has been verified by comparing its transmission loss predictions with analytical sloutions. Example problems are included to investigate the characteristics of the multi-region structural-acoustic coupling system with porous material.

  • PDF

Development of Noise Analysis Program by using Power Flow Analysis in Medium-to-high Frequency Ranges (파워흐름해석법을 이용한 중고주파수 대역 소음해석 프로그램 개발)

  • Kwon, Hyun-Wung;Song, Jee-Hun;Hong, Suk-Yoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.384-390
    • /
    • 2012
  • Power Flow Analysis (PFA) is introduced for solving the noise and vibration analysis of structures in medium-to-high frequency ranges. The vibration analysis software, $PFADS_{C{+}{+}}$ R4 based on Power Flow Finite Element Method (PFFEM) and the noise prediction software, $NASPFA_{C{+}{+}}$ R1 based on Power Flow Boundary Element Method (PFBEM) are developed. In this paper, the coupling equation which represents relation between structural energy and acoustic energy is developed for vibro-acoustic coupling analysis. And vibro-acoustic coupling analysis software based on PFA and coupling equation is developed. Developed software is composed of translator, cavity-finder, solver and post-processor over all. Translator can translate FE model into PFADS FE model and cavity-finder can automatically make NASPFA BE model from PFADS FE model for noise analysis. The solver module calculates the structural energy density, intensity of structures, the fictitious source on the boundary and the acoustic energy density at the field in acoustic cavities. Some applications of vibro-acoustic coupling analysis software to various structures and cruise ship are shown with reliable results.

An Experimental Study on The Coupling Path and Acoustic Modal Characteristics of Passenger Compartment - Trunk Coupled System (차실-트렁크 연성계의 연성경로 및 음향모드 특성에 관한 실험적 연구)

  • Kim, Gyoo-Beom;Lee, Jin-Woo;Lee, Jang-Moo;Kim, Seock-Hyun;Park, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.607-611
    • /
    • 2000
  • Acoustic modal property of the vehicle passenger compartment is a very important factor which dominates vehicle interior noise in the low frequency range. In most real cars, trunk noise often transfers into the passenger compartment since the two cavities are acoustically coupled. This study identifies the major coupling path by examining the variation of the coupled acoustic modal frequencies and modes. An 1/2 size acryl compartment model is designed and manufactured for the measurement and analysis of coupled acoustic modes. Experimental result shows that package tray contributes to the coupling much more than the back seat and hole size of the package tray is an important design factor to control low frequency acoustic modes in the coupled system.

  • PDF

Numerical and Experimental Investigation on Structure-acoustic Coupling Effect in a Reverberant Water Tank (잔향수조의 구조-음향 연성효과에 관한 수치 및 실험적 고찰)

  • Park, Yong;Kim, Kookhyun;Cho, Dae-Seung;Lee, Jong-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Underwater acoustic power should be measured in a free field, but it is not easy to implement. In practice, the measurement could be performed in a reverberant field such as a water-filled steel tank and concrete tank. In this case, the structure and the acoustic field are strongly or weakly coupled according to material properties of the steel and water. So, characteristics of the water tank must be investigated in order to get the accurate underwater acoustic power. In detail, modal frequencies, mode shapes of the structure and frequency response functions of the acoustic field could represent the characteristics of the reverberant water tank. In this paper, the structure-acoustic coupling has been investigated on a reverberant water tank numerically and experimentally. The finite element analysis has been carried out to estimate the structural and acoustical modal parameters under the dry and water-filled conditions, respectively. In order to investigate the structure-acoustic coupling effect, the numerical analysis has been performed according to the structure stiffness change of the water tank. The acoustic frequency response functions were compared with the numerical analysis and acoustic exciting test. From the results, the structural modal frequencies of the water-filled condition have been decreased compared to those of the dry condition in the low frequency range. The acoustic frequency response functions under the coupled boundary conditions showed different patterns from those under the ideal boundary conditions such as the pressure release and rigid boundary condition, respectively.

Acoustic Coupling Between Passenger and Luggage Compartments Through Loudspeaker Holes Using Indirect BEM (스피커 구멍을 통한 차실과 트렁크 공간과의 음향 연성에 대한 간접경계요소해석)

  • 정지훈;이정권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.66-75
    • /
    • 1997
  • Sound transmission from the luggage comparment into the car cabin is important in the viewpoint if exhaust and road noises of passenger cars. In this paper, acoustic modal coupling between passenger and luggage compartments through loudspeaker holes at parcel shelf is dealt with for a sedan type passenger car with rigid rear seat. For these purposes, a half-scaled model car is tested and computed by the indirect BEM. Predicted acoustic transfer functions are compared with experimental ones and they agree reasonably well. It is found that the fore-aft resonance frequencies of the passenger cavity in the absence of coupling holes are tend to shift to higher frequencies when the luggage compartment is coupled to the passenger cavity.

  • PDF

Directional Radiation Pattern Design Using Structural-Acoustic Coupling (구조-음향 연성현상을 이용한 지향성 방사패턴 설계)

  • Seo, Hee-Seon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.751-754
    • /
    • 2004
  • This paper presents a design of the directional radiation pattern by using the structural-acoustic interaction. For this purpose, prediction of the pressure distribution of the field points and radiation pattern of the structural-acoustic coupling system is shown. In order to get a strong coupling, coupled system that has a finite space and a semi-infinite space separated by two flexible walls and an opening is selected. A volume interaction can be occurred in structure boundary and a pressure interaction can be happened in the opening boundary. The coupled system is maximized the radiation power on the main axis and minimized the side lobe level.

  • PDF

Multi-Domain Structural-Acoustic Coupling Analysis Using the Finite Element and Boundary Element Techniques

  • Ju, Hyeon-Don;Lee, Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.555-561
    • /
    • 2001
  • A new approach to analyze the multi-domain acoustic system divided and enclosed by flexible structures is presented in this paper. The boundary element formulation of the Helmholtz integral equation is used for the internal fields and the finite element formulation for the structures surrounding the fields. We developed a numerical analysis program for the structural-acoustic coupling problems of the multi-domain system, in which boundary conditions such as the continuity of normal particle velocity and sound pressure in the structural interfaces between Field 1 and Field 2 are not needed. The validity of the numerical analysis program is verified by comparing the numerical results with the experimental ones. Example problems are included to investigate the characteristics of the coupled multi-domain system.

  • PDF